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Abstract

LCo with the Converse Ackermann Property is defined as the result of restricting

Contraction in LC. Intuitionistic and Superintuitionistic Negation is shown to be

compatible with the C.A.P..
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1. Introduction

In [3] it is shown how to define the logic CIr: Dummett’s LC without the
contraction but with the reductio axiom. In this paper we consider the
possibility of extending CIr with the restricted contraction axiom

rW. (A→ (A→ (B → C)))→ (A→ (B → C))
that is, the contraction axiom

W. (A→ (A→ B))→ (A→ B)
restricted to the case in which B is an implicative formula (A is im-

plicative iff A is of the form B → C). We’ll show:
1. rW is not a CIr theorem



140 Francisco Salto, José M. Méndez, Gemma Robles

2. CIr can not be extended with rW: the result would collapse in LC
3. CIr can be extended with rW provided assertion is also restricted

to:
rA. A→ ((A→ (B → C))→ (B → C))

that is, the assertion axiom
A. A→ ((A→ B)→ B)

restricted to B an implicative formula.
We shall concentrate upon this last logic, namely LC with restricted

assertion and restricted contraction. Let us refer to this logic by LCo. The
point in studying LCo is:

4. LCo is, so we think, an intersting sublogic of LC with the Converse
Ackermann Property (C.A.P.).

C.A.P. is first defined in [1], where the problem as to which logics
do possess C.A.P. is posed. A partial solution is offered in [2] concerning
subintuitionistic logics. Defining LCo widens the scope of logics with the
C.A.P. and, significantly, shows that intuitionistic and superintuitionistic
negation are in fact C.A.P. compatible. Finally,

5. Properly adapted complete ternary relational semantics for LCo

are offered.

2. The Logic CIr

The Logic CIr is motivated, defined and axiomatized in [3]. For the present
purposes, it is convenient to work with an alternative axiomatization of
both positive and negative fragments of CIr, containing the following ax-
ioms, rules and falsity constant F:

Axioms
A1. A→ (B → A)
A2. (A→ B)→ ((B → C)→ (A→ C))
A3. A→ ((A→ B)→ B)
A4. (A ∧B)→ A (A ∧B)→ B
A5. ((A→ B) ∧ (A→ C))→ (A→ (B ∧ C))
A6. A→ (A ∨B) B → (A ∨B)
A7. ((A→ C) ∧ (B → C))→ ((A ∨B)→ C)
A8. (A ∧ (B ∨ C))→ ((A ∧B) ∨ C)
A9. (A→ B) ∨ (B → A)
A10. A→ ((A→ F )→ F )
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A11. (A→ (A→ F ))→ (A→ F )
A12. F → B
Rules of Inference: Modus Ponens (if ` A → Band ` A, then ` B)

and Adjunction (if ` A and ` B, then ` A ∧B).

3. rW is not a theorem of CIr

Consider the following set of matrices, where the only designated value is
2 and F is assigned the value 1:

→ 0 1 2 ∨ 0 1 2 ∧ 0 1 2
0 2 2 2 0 0 1 2 0 0 0 0
1 1 2 2 1 1 1 2 1 0 1 1
2 0 1 2 2 2 2 2 2 0 1 2

This set verifies CIr but falsifies rW only when A=1, B=2, C=0 (Cfr.
[4], §5, where the same result is rendered by a frame argument).

4. CIr plus rW

We note that contraction is derivable in CIr plus rW. As ((A → A) →
B)←→ B is a theorem, replace in rW ”B” by ” A→ A” and ”C” by ”B”.

5. The Logic LCo

The Logic LCo is the result of deleting A3 and A12 in CIr and adding the
axioms

A3’. A→ ((A→ (B → C))→ (B → C))
A3”. (A→ (A→ (B → C)))→ (A→ (B → C))
and
A12’. F → (A→ B)
Thus, we note, LCo is the result of restricting in LC contraction,

assertion and E Contradictione Quodlibet (F → B) to the case in which B
is an implicative formula.
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6. Converse Ackermann Property

Consider the following set of matrices where F is assigned the value 0 and
2 is the only designated value

→ 0 1 2 ∨ 0 1 2 ∧ 0 1 2
0 2 0 2 0 0 0 2 0 0 1 0
1 2 2 2 1 0 1 2 1 1 1 1
2 0 0 2 2 2 2 2 2 0 1 2

This set verifies LCo but falsifies (A → (A → B)) → (A → B) only
when A=0, B=1 and A → ((A → B) → B) only when A=2, B=1. We
show that LCo has the C.A.P.: let (A → B) → C be a wff in which C
contains nor → neither F . Assign all variables in the value 1. Then,

v((A→ B)→ C) = 0.
We note that, for example, the following are LC o theorems (recall

that ¬A = A→ F ):
(A→ ¬B)→ (B → ¬A)
A→ ¬¬A
(A→ ¬A)→ ¬A
(A→ B)→ ((A→ ¬B)→ ¬A)
¬A→ (A→ ¬B)
We remark that if F → B is introduced instead of A12’, the resulting

logic would not have the C.A.P.

7. Semantics

A LCo model is a quadruple < K,S,R, |=> where K is a set, S a non-
empty subset of K and R is a ternary relation onK subject to the following
definitions and postulates for all a, b, c, d ∈ K with quantifiers ranging over
K:

d1. a ≤ b =def ∃xRxab
d2. R2abcd =def ∃x(Rabx and Rxcd)
d3. R3abcde =def ∃x∃y(Rabx and Rxcy and Ryde)
P1. a ≤ a
P2. (a ≤ b and Rbcd)⇒ Racd
P3. R2abcd⇒ ∃x(Racx and Rbxd)
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P4. R2abcd⇒ R3abbcd
P5. R2abcd⇒ R2bacd
P6. Rabc⇒ a ≤ c
P7. (Rabc and Rade)⇒ (b ≤ e or d ≤ c)
P8. (Rabc and c ∈ S)⇒ ∃x(x ∈ S and Rbax)
P9. (Rabc and c ∈ S)⇒ ∃x∃y(Rabx and Rxby and y ∈ S)
P10. a /∈ S ⇒ (not−Rabc or c |= A for any wff A).
Finally, |= is a valuation relation from K to the sentences of LCo

satisfying the following conditions for all p,A,B and a, b, c ∈ K
(i) (a |= p and a ≤ b)⇒ b |= p
(ii) a |= A ∨B iff a |= A or a |= B
(iii) a |= A ∧B iff a |= A and a |= B
(iv) α |= A→ B iff for all b, c ∈ K, (Rabc and b |= A)⇒ c |= B
(v) a |= F iff a /∈ S

A is valid in LCo (|=LCo A) iff a |= A for all a ∈ K in all models.
Proof of the semantic consistency of LCo [if `LCo A, then |=LCo A] is left
to the reader. (Cf. [2] for a general strategy. As for the validity of A10,
A11 and A12’ use, respectively, P8, P9 and P10).

8. Completeness of LCo

We begin with some definitions. Let KT be the set of all theories (a theory
is a set of formulas closed under adjunction and provable entailment). Let
RT be defined as follows: for all formulas A,B and a, b, c, d ∈ KT :

RTabc⇔ [(A→ B ∈ a and A ∈ b)⇒ B ∈ c]
Further, let KC be the set of all prime non-null theories [a theory a

is prime if whenever A∨B ∈ a, then A ∈ a or B ∈ a; a theory is null iff no
formula belongs to it]. And let SC be the set of all consistent theories [a is
consistent iff the negation of a theorem does not belong to a]. Finally, let
|=Cbe defined for any wff A and a ∈ KC as follows: a |=C A⇔ A ∈ a.Then,
the LCo canonical model is the quadruple < KC , SC , RC , |=C>.

We now prove completeness beginning with some previous lemmas.
In Lemmata 1, 5 and 6 we refer to previous work in substructural logics:
these lemmata are proved or else they are easily derived from the results
there refered.
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Lemma 1. Let A be a wff, a a non-null element in KT and A /∈ a. Then,
A /∈ x for some x ∈ KC such that a ⊆ x.

Proof. See [4].

Lemma 2. For any a ∈ KT , F ∈ a iff a is inconsistent.

Proof. Easy using A11.

Lemma 3. SC is not empty.

Proof. As 6|=LCo F, we have 6|=LCo F by semantic consistency. Then,
Lemma 1 is applicable and there is some x ∈ KC such that LCo ⊆ x and
F /∈ x. Thus, x is consistent. Therefore, x ∈ SC .

Lemma 4. The canonical |=C is a valuation relation satisfying conditions
(i)-(v) [§6].
Proof. Clauses (i)-(iv) can be proved, for example, as in [3]. Clause (v)
holds by Lemma 2.

Now, concerning the proofs of the following two Lemmas, that of
Lemma 5 is immediate and the proof of Lemma 6 easily follows from [4]:

Lemma 5. Let a, b non-null theories. The set x = {B : ∃A(A → B ∈ a
and A ∈ b)} is a non-null theory such that RTabx

Lemma 6. Let RTabc, a a non-null element in KT , b ∈ KT and c a prime
member in KT . Then, RTxbc for some x in KC such that a ⊆ x.

Lemma 7. The canonical postulates hold in the LCo canonical model.

Proof. See [2] and [3] for P1-P7. We now prove that P8, P9 and P10.
P8. (RCabc and c ∈ SC)⇒ ∃x(x ∈ SC and RCbax)
Define (Cf. Lemma 5) the non-null theory y = {B : ∃A(A→ B ∈

b and A ∈ a)} such that RT bay. We prove
the consistency of y by reductio. If F ∈ y (Lemma 2), then, by

definition of y, A→ F ∈ b and A ∈ a. By A10,
(A → F ) → F ∈ a. Since RCabc is given, deduce F ∈ c contra-

dicting the hypothesis. Now apply Lemma 1 to
extend y to some x ∈ SC such thatRCbax.
P9. (RCabc and c ∈ SC)⇒ ∃x∃y(RCabx andRCxby and y ∈ SC)
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Define with Lemma 5 the non-null theories:
u = {B : ∃A(A→ B ∈ a and A ∈ b)}
w = {B : ∃A(A→ B ∈ u and A ∈ b)}
satisfying RTabu and RTubw. Assume for reductio F ∈ w. By

definitions, A→ (B → F ) ∈ a, A ∈ b, B ∈ b.
As (A → (B → F )) → ((A ∧ B) → F ) is a theorem, (A ∧ B) →

F ∈ a. Since A ∧B ∈ b and RCabc, we have
F ∈ c, which is impossible c being consistent. Therefore, w is

consistent (cf. Lemma 2). Now, u and w are
extended to x ∈ KC and y ∈ SC such that RCabx and RCxby

[Apply Lemma 1 and Lemma 6].
P10. a /∈ SC ⇒ (not−RCabc or A ∈ c) [for any wff A]
Suppose F ∈ a (cf. Lemma 2), RCabc and A ∈ b (since b is

non-null). Let B be any wff. By A13, A→ B ∈ a. Thus, B ∈ c.

Lemma 8. If 6`LCo A, then there is some x ∈ KC such that A /∈ x.

Proof. By Lemma 1.

From Lemmas 3, 4 and 7 it follows that the canonical model is in fact
a model. Then, completeness follows by Lemma 8. We finish this paper
with the following

9. Note

If A12’ is deleted from LCo, the result is LC with the C.A.P. and minimal
negation [LCom]. If, accordingly, P10 is deleted from LCo models, would
presumably obtain LCom models, that is, complete semantics for LC with
the C.A.P. and minimal negation.
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