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Abstract

The concept of constructive negation we refer to in this paper is (minimally)
intuitionistic in character (see [1]). The idea is to understand the negation of a
proposition A as equivalent to A implying a falsity constant of some sort. Then,
negation is introduced either by means of this falsity constant or, as in this paper,
by means of a propositional connective defined with the constant. But, unlike
intuitionisitc logic, the type of negation we develop here is, of course, devoid of
paradoxes of relevance.

1. Introduction

We explain what we understand by “constructive negation”. Next, we
comment some previous results and state the aim of the paper.

1.1. The concept of constructive negation

The concept of constructive negation we refer to in this paper is (minimally)
intuitionistic in character (see [1]). The idea is to understand the negation
of a proposition A as equivalent to A implying a falsity constant of some
sort. Then, negation is introduced either by means of this falsity constant
or, as in this paper, by means of a propositional connective defined with the
constant. But, unlike intuitionisitc logic, the type of negation we develop
here is, of course, devoid of paradoxes of relevance.
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This concept of constructive negation can essentially be understood
in two different senses:

a. The first one coincides with the negation characterisitic of Johans-
son’s minimal intuitionistic logic that can intuitively be described by
the presence of the weak versions of “double negation” (A — ——A4),
“contraposition” ((A — —-B) — (B — —A4)) and “reductio” ((A —
B) — [(A — —=B) — —A)]).

b. In the second one, the idea is to add a falsity constant F' to a given
positive logic S;. Next, one defines ~A = A — F but no new axioms
are added to Sy. Then, it is the positive logic S; that provides
its, so to speak, underlying “concept of negation”. If Sy is positive
intuitionistic logic I, senses a and b are of course equivalent. But,
what happens if S, is a weaker postive logic?

In what follows sense a will be labelled “Johansson negation” and
sense b “minimal negation”.

1.2. Previous results

Let a “quasi-Johansson negation” be defined by the presence of the (weak)
double negation and contraposition axioms together with ”specialized re-
ductio” ((A — —A) — —A) instead of the “full redutio axioms” ((A —
B) - [(A - -B) - -4], (A - -B) — [(A — B) — —4]). In [3],
it is shown how to introduce a minimal and a quasi-Johansson negation
in the basic positive logic By of Routley and Meyer (see [4]) by using a
falsity constant. As B, is the weakest logic definable in the ternary re-
lational semantics, it is actually shown how to introduce both types of
negation in any logic representable with the relational ternary semantics.
In that same paper it is argued that the full reductio axioms cannot be
introduced in By, the resources of this logic being insufficient to prove
the corresponding semantical conditions for the axioms. Moreover, as it is
dicussed in [2], this seems to be so even in the case of the strong full non-
constructive axioms. Now, in [3] it is proved that if the prefixing axiom
(B—C)—[(A— B)— (A — ()) is added to B, the full reductio
axioms can be introduced in the resulting logic called Bp...
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1.3. Aim of the paper

The aim of this paper is to develop the logic suggested in [3] and commented
above. We will show how to introduce a Johansson negation in any logic
including Bp, by using a negation connective. A distinctive feature of
the resulting logic will be the presence of the ”"permuted contraposition
axioms” (=B — [(A — B) — —A4] and B — [(A — —B) — —A]) that are
not theorems of B,,, (B4 with the quasi-Johansson negation) defined in
[3]. (The reason that explains the absence of the full reductio axioms in
B, is also an explanation of the absence of the permuted contraposition
axioms). In particular, the structure of the paper is the following. In §2,
the logic Bpy is defined. In §3, §4, we introduce the logic Bpc which is
the result of introducing the contraposition and permuted contraposition
axioms together with double negation. In §5, the logic Bpcr is defined. It is
the result of adding the full reductio axioms to Bpc and, as it was remarked
above, it is considerable stronger than the extension of Bp, suggested in
[3]. Finally, in §6, we briefly comment on the relationship between Bper
and modal and relevance logics.

2. The logic Bp.

The logic Bp. is the result of adding the prefixing axiom (A2) to By. That
is, Bp, is axiomatized with

Al. A—- A

A2. (B—-C)—=[(A— B)— (A—0)
A3. (ANB)— A | (ANB)—B

A4, [[A-B)AN(A—-C)—=[A— (BANO)]
A5, [([A—-C)AN(B—-C)]—[(AVB)—C|
A6. [AN(BVC)—=[(ANB)V(ANC)]

The rules of inference are Modus ponens (MP) (if H A — B and - A,
then - B), Adjunction (Adj) (if - A and F B, then - A A B) and Suffizing
(Suf) (if - A — B, then - (B — C) — (A — (O)).

NoTE. The logic B4 is the result of dropping the prefixing axiom A2
and adding the prefixing rule (Pref): (if - B — C, then - (A — B) —
(A— Q).
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A Bp, maodel is a quadruple < K, O, R, > where K is a set, O a
subset of K and R a ternary relation defined on K subject to the following
definitions and postulates for all a, b, ¢, d € K:

dl. a <b=g4 (3z € O) Rzxab

d2. R%abed =45 (3z € K) [Rabx & Rxcd)
Pl. a<a

P2. (a <b & Rbed) = Racd

P3. R?abed = (Jz € K) [Rbcx & Raxd)

= is a valuation relation from K to the sentences of the positive language
satisfying the following conditions for all propositonal variables p, wils A,
Banda,b, ce K:

(i
(i
(iii
(iv

). (aEp&a<b)=bEDp

). aEAVBiffaEAoralEB

). aEAABiffaEAandal=B

). aEA— Biffforallb,ce K (Rabc &k b= A)=cE B

A formula A is valid (=pp, A) iff a = A for all a € O in all models.

NoTE. B, models are exactly as Bpy models but without the postulate
P3.

In e.g, [3], it is proved that A is a theorem of Bp iff A is Bp, valid.

3. The logic Bpc

We add to the positive propositional language the unary connective —.
Then, the logic Bpc (Bpy with (weak) contraposition and (weak) double
negation) is axiomatized by adding to Bp4 the axioms:

A7. (A— -B)— (B ——A)
A8. B — [(A — ﬁB) — ﬁA]
A9. (A= B)—[(B—-C)— (A— —-C)]

A7 is a form of weak contraposition (other forms are A8 and T2, T3 below),
A8 is permuted A7 and A9 is a restricted version of the suffixing axiom

(A—=B)—=[(B—=C)—(A-0)
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to the case in which C is a negative formula. The following, for example,
are theorems of Bpc (a sketch of the proof is provided at the right side of
the theorem)

Tl. A— A AT
T2. (A— B) — (=B — —A) A7, T1
T3. =B — [(A— B) — —4] A8, T1
T4. A— [(A— —-B) — —B A7, A8
T5. [A— (B—-C)]— [B— (A— -0) A9, T4
T6. B—[[A— (B — -C)] — (4 — 0] T4

Theorems T4-T6 are restricted versions of assertion
A—[(A—=0C) =]

permutation
[A—=(B—=C)]—[B—(A4-C)

and conditioned modus ponens
B—=[A=(B—0)]—=(A—=0)]

to the case in which C is a negative formula (in §6, it is proved that the
unrestricted version are not provable). We note that A9, T4, T5 and T6
can be generalized:

A9g. (A— B)—{[B—[C1— ((...(Cr, = =D)..))]] —
[A—[C; — ((...(C, = =D).. )]}
T4g. A — {[A— [B1 — ((...(Bn, — —C)..))]] —
[B1 — ((...(Bn, — —C)..))]}
T5g. {A— [B1 — ((-..(Bp, — =C)...))]} —
{B1 = [A—[B2 = ((..(Bn = =C)..))]]}
T6g. B1 — {[A— [B1 — ((...(Bn, — —C)...))]]
[A— [By — ((...(Bn, — =C). )N}

—

These generalized versions are proved as follows. Suppose we have
A9g (n =k —1),T4g(n =k — 1) and THg(n = k — 1). Then prove
i. Thg(n = k) with A9g (n =4k —1),Tdg(n =k —1).
ii. T4g(n = k) with T4g (n =k — 1),T5g(n = k).
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iii. A9g(n = k) with A9¢ (n =k — 1), T5g(n = k).
iv. T6g(n = k) with T4g(n =k —1).

For example, let us prove iii:

Proor.
1. (A= B)—={[B—[Cy— ((..(Cx — —D)...))]] =
[A— [Co — ((...(Cr — —=D)..)]]} Abg(n=k—-1)
By A2
2. (A= B)—={|C; = [B—[Cy— ((...(Cx = -D)..))]]] —
[C1 — [A = [C2 = ((-.(Cn — =D).))]]]}
Now, by applying Thg(n = k)
3. (A—-B)—={[B—][C1—[Cy— ((...(Cx — —D)..)]]] —
[A—[Cy = [Co = ((-.(Ck — =D)..))]]}

O
Other characteristic theorems of Bpc are:
T7. "A—[A— —~(A— A) A7, T13
T8 [A—-—-(A—A)]— -4 Al, A8
T9. (WAA-B) < (mAV B) A7, T2
T10. (wAV-B)—-(AAB) T2

4. Semantics for Bpc

A Bpc model is a quintuple < K, O, S, R, E> where < K, O, R, E>is
a Bp; model and S is a subset of K such that S N O # 0. The following
clause and postulates are also added:

(v). aE=—-Aiff for allb, c€ K, (Rabc & c€ S) = b}E A
PA7. R?abed & d € S = (Jz € S) R?%acbx
PA8. R2%abed & d € S = (Jz € S) R?*bcax
PA9. R3abede & e € S = (Fz, y € K) (I2 € S) [Racx & Rbzy & Rydz]

where
R3abede =gp (Jz, y € K) [Rabz & Rxcy & Ryde]
A is Bpc valid iff o |= A for all a € O in all models.
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NOTE. As it is known, the definition of minimal negation in the binary
relational semantics (Kripke semantics) can be formulated as follows:

a |= —A iff for all consistent points, if Rab, then b = A

Now, clause (v) is the translation of this definition in the ternary relational
semantics.

Semantic consistency (soundness) of Bpc follows, given that of Bpy,
just by proving that A7, A8 and A9 are valid: use PA7, PA8 and PAY,
respectively.

As for completeness, the canonical model is the structure < K¢, O,
SC RC, E¢> where K¢, O¢, RY and [=%are defined as it is customary
in relevance logics (see e.g, [4]) and S© (that is, canonical S) is interpreted
as the set of all consistent theories (a theory is a set of formulas closed
under adjunction and provable entailment; a theory is inconsistent iff the
negation of a theorem belongs to it). Then, given the completeness of
Bp4, we just have to prove that clause (v) and PA7, PA8 and PA9 hold
canonically. Thus, we prove

PROPOSITION 1. PA7, PAS8 and PA9 hold canonically, i.e,

1. R®?abed & d € S¢ = (H:C € SC) R%achx

2. R%%abcd & d € S¢ = (EI;E € SC) R?bcax

3. R%abcde & e € S¢ = (Elx, Yy € Kc) (Elz € Sc)
[RCacr & R%bry & RCydz]

It is clear that this proposition follows from the following lemma where
KT is the set of all theories and RT is the extension of R® to all theories:

LEMMA 2.

1. Let a, bc € KT, d a consistent member in KT and R"?abcd. Then,
there is some x € S¢ such that RT?acbx.

2. Let a, b,c € KT, d a consistent member in KT and R"?abcd. Then,
there is some x € S¢ such that RT?*bcax.

3. Let a, b,c, d € KT, e a consistent member in KT and RT3abcde.
Then, there are z, y € KT and z € S¢ such that R acz, RTbxy and
RTydz.
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Let us prove, for example, that iii holds (proof of i and ii are similar):

PROOF. Let a, b,c, d € KT, e a consistent member in K7 and RT3abcde,
i.e, RTabx, RTxcy and RTyde for some z, y € KT. We prove that there
are z, u € KT and w € S¢ such that RTacz, RTbzu, RTudw. Define
the theories 2 = {B| A - B caand Aecj,u={B|A—-Beb
and A € z} and w = {B| A — B € u and A € d} such that RTacz,
RTbzu and RTudwr. We prove that w/ is consistent. Suppose it is not.
Then, for some theorem A, A € w/. By definitions, B — —A € u, B € d,
C—-(B—-A)eb Cez D— Ce€a,DEecfor some wif B, C, D.
Now, - (D — C) — [[C — (B — —=A)] — [D — (B — —A)]] is a theorem
(Abg(n = 1)). So, [C — (B — —A)] — [D — (B — —A)] € a and by
RTabr, D — (B — —-A) € z; by RTzcy, B — —A € y and finally, =A € e
by RTyde contradicting the consistency of e. Therefore, w/ is consistent.
Next, w/ is extended to a prime theory w such that RTudw. Now, parts i
and ii of lemma 1 are proved similarly by using T5 and T6, respectively.O

Next, we prove
PROPOSITION 3. Clause (v) holds canonically.

PROOF.

1. If =A € a, then (R€abc & c € SY) = A ¢ b.
Suppose ~A € a, R€abe, ¢ € S¢ and, by reductio, A € b, By T7,
A — —=(A — A) €a. So, 7(A— A) € cby RCabc and A € b. But ¢
would be inconsistent.

2. If =A ¢ a, then there are b € K¢, ¢ € SY such that R¢abc and
Aeb.
First, let us suppose that =A ¢ a. Then define the theories z =
{BIFA—-B}landy={B|C — Be€aand C € x}. Itiseasy to
show that RTaxy and A € 2 (F A — A). Next, we prove that y is
consistent. If y is not consistent, then =B € y, B being a theorem
of Bpc. By definitions, C — -B € a, C € z, - A — C for some wif
C. By Suf, + (C — -B) —» (A — —B). Then, A — =B € a. Now,
by A8, (A — —B) — —A because B is a theorem. In consequence,
—A € a which contradicts the hypothesis. Therefore, y is consistent.
Finally, z and y are extended to prime theories b, ¢ such that R abc
and A € b.
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5. The logic Bpcr

The logic Bper (Bpe plus (weak) reductio) is axiomatized by adding to
Bpc:
A10. (A— B) — [(A — -B) — —4]

The following (in addition to T1-T10) are, for instance, theorems of
Bper:

T1l. (A—-4)—-A A10
T12. (A— —=B)— [(A— B) — 4] A10, T5
T13. | (A — =B)] = (A — —B) A7, T5, T11
T14. | (B—-C)]—[(A— B)— (A— —C)] Thg(n=2), T13
T15. (A — B) [A— (B— ()] — (4 —-0)] A9, T13
T16. [A— (B — -C)] = [(AAB) — —C] T15
T17. (AAB)— (A— —B) A7, T4, T16
T18. (A— —-B) — - (AAB) A7, T17
T19. (A— B) — - (AA-B) T1, T18
T20. (AA-B)— - (A— B) A7, T19
T21. = (AAN-A) T19

We note that T13-T16 are restrictions of, respectively, contraction
A—-(A=C)]—(A=C)

self-distribution of the conditional
[A—=(B—=C)]—[(A—B)—(4-C)

permuted self-distribution of the conditional
(A= B)=[[A=(B—=C)]—=(4-0)

and importation
[A—=(B—=C)]—[(AAB) = (]

to the case in which C is a negative formula (it is proved in §6 that the
unrestricted versions are not provable).
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Now, T13-T16 can be generalized:

T13g. {A—[A— [B1 — ..((-..(B, — =C)..))]]} —
[A— [B; = ((...(B, — —C)..))]]
Tldg. {A — [B1 — ((...(Bn, — =C)..)]|} —
{(A = By) = [A = [Bs — (((Ba — ~C). )]}
T15g. (A— By) = {[A — [B1 = ((-..(Bn = =C)...))]] =
(4= [By = (- (Ba — ~C) )]}
T16g. {A — [B1 — ((...(B, — —C)..))]|} —
{(AABy) = [By = ((-..(Bn — —=C)..))]}

These generalized theorems are proved as follows:

Proor. T13g(n = k): Thg(n = k), Tog(n =k +1), T13g(n =k —1).
Tl4g(n = k): Tsg(n =k +1), T13g(n =k —1).
T15g(n = k): T13g(n =k —1).
T16g(n = k): Thg(n = k).
These proofs are developed similarly as the proof of A9g(n =k). O

6. Semantics for Bpcr

Models for Bpcr are defined similarly as those for Bper but with the addi-
tion of the postulate

PA9. R?abed & d € S = (Fz,y € K) (32 € S) [Racr & Rbcy & Ryxz]

This postulate is used in showing the validity of A10 thus proving the
semantic consistency (soundness) of Bper. In order to prove completeness
we have to prove:

PROPOSITION 4. The postulate PA9 is canonically valid, i.e,

R%%abcd & d € S€ = (333, y € KC) (EIZ € Sc) [Rcacm & RCbey & Rcy:cz]

This proposition follows immediately from
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LEMMA 5. Leta, b, c€ KT, d a consistent member in KT and RT2abcd.
Then, there are x, y € KT and z € S¢ such that R acx, RTbcy and
RTyxz.

PROOF. The proof is similar to that of lemma 1, use A9g(n = 1), T5 and
T16. O

7. Two final notes on Bpcr

First, we note that although Bpcr is included in the logic of Relevance R,
it is not included in e.g, the logic of Entailment E or Lewis’s modal logic
Sh: if

A8. B — [(A — —B) — —4]
or
T3. =B — [(A— B) — —4]

are added to E, the resulting logic is the logic of Relevance R; if A8 (or
T3) is added to Lewis’s S3, the result is classical propositionsl logic (proof
of this fact is left to the reader).

Secondly, we have remarked that versions of assertion

A—[(A—=C)—=C]
permutation

[A— (B— )] = [B—(A—0)]
conditioned modus ponens

B=[A—(B-0)]—(A-0)]
contraction

[A— (A= C)] = (A—C)
self-distribution of the conditional

[A— (B—C)] = [(A— B) = (A= C)]

permuted self-distribution of the conditional
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(A—=B)—=[[A—=(B—-C)]— (A=)
and importation
[A—(B—C)] = [(ANB) = (]

restricted to the case in which C' is a negative formula are provable in Bpcr.
We now prove that the unrestricted versions just mentioned are un-
provable in Bpcr.
Consider the three following sets of matrices (in (I), 1 and 2 are the
designated values; in (II), (III), 2 is the only designated value):

(111

o o R|lo
O R =
NN NN
O O O
O N N =
DN NN
O O N
[\Db—‘Ol
O = NO
=N N
DN NN

In the three cases, the matrices for A and V are the following:

PRrOOF. Each one of these three sets satisfies the axioms are rules of Bpcr
but:

(I) does not satisfy the suffixing axiom (A — B) — [(B — C) —
(A — Q)] (for example, v(A) =v = (B) =2,v(C) =1).

(IT) does not satisfy:

A—[(A— B) — B]

(v(A) =v(B) =1)

[A—(B—C)]—[B—(A—0)

(U(A) =2,v(B)=v(C) =1)

—[[A—=(B—-0C)]—(A— ()]

( (A)=2,v(B) =v(C) =1)

(IIT) does not satisfy:

[A— (A— B)]— (A— B)

(v(A) =1, v(B) =0)

[A—=(B—C)—=[(A—B)—(4-0)

NN N
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(v(4) =v(B) =1, v(C) =0)
(A—)B)—>[[A—>(B—> )] (A—)C)]
(v(4) =v(B) =1, v(C) =0)

[A— (B—C)] —[(AAB) — (]

(v(A) =v(B) =1, v(C) =0)
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