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Abstract. Routley-Meyer semantics (RM-semantics) is defined for Gödel

3-valued logic G3 and some logics related to it among which a paracon-

sistent one differing only from G3 in the interpretation of negation is to

be remarked. The logics are defined in the Hilbert-style way and also by

means of proof-theoretical and semantical consequence relations. The

RM-sematics is defined upon the models for Routley and Meyer’s basic

positive logic B+, the weakest positive RM-semantics. In this way, it is

to be expected that the models defined can be adapted to other related

many-valued logics.
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1. Introduction

The aim of this paper is to provide a Routley-Meyer semantics (RM-semantics)

for Gödel 3-valued logic G3 and a 3-valued paraconsistent logic related to it.

Gödel logics were introduced in [6] as a way of showing that propo-

sitional intuitionistic logic does not have a finite characteristic matrix. In

[5], Dummett proved that if the linearity axiom ( → ) ∨ ( → ) is
added to propositional intuitionistic logic, the resulting system (LC) has an

infinite-valued characteristic matrix (see, e.g., [2] on Gödel logics). Now, be-

fore defining G3 and its paraconsistent counterpart, we shall specify the log-

ical language used in the paper.

.
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Remark 1.1 (Languages, logics). The propositional language consists of a de-

numerable set of propositional variables 0 1    and some or all of
the following connectives → (conditional), ∧ (conjunction), ∨ (disjunction)
and ¬ (negation). The biconditional (↔) and the set of wffs are defined in
the customary way. , etc. (possibly with subscripts 0 1  ) are met-
alinguistic variables. We shall consider, from the proof-theoretical point of

view, propositional logics formulated in the Hilbert-style way, that is, logics

axiomatized by means of a finite set of axioms (actually, axiom schemes) and

a finite set of rules of derivation. Then, we shall define (proof-theoretical)

consequence relations on these Hilbert-style formulations in order to be able

to derive consequences from sets of premises, which are not necessarily theo-

rems. We shall refer by P and F to the set of all propositional variables and

the set all wffs, respectively.

Definition 1.2 (3-valued matrices). Let S3 be the set {0 12  1} where 0 ≤ 1
2 ≤ 1

and 1 is the only designated value. Then:
(1) The 3-valued matrix MG3 is defined by the following truth tables:

→ 0 1
2 1

0 1 1 1
1
2 0 1 1
1 0 1

2 1

∧ 0 1
2 1

0 0 0 0
1
2 0 1

2
1
2

1 0 1
2 1

∨ 0 1
2 1

0 0 1
2 1

1
2

1
2

1
2 1

1 1 1 1

¬
0 1
1
2 0
1 0

(2) The 3-valued matrix MG3Ł is defined exactly as MG3, except for

the table for negation, which is the following:

¬
0 1
1
2

1
2

1 0

Given MG3 and MG3Ł interpretations and validity are as follows.

Definition 1.3 (Interpretations, validity). An MG3-interpretation (MG3Ł -

interpretation), , is a function from F to S3 according to the truth tables

in MG3 (MG3Ł ). Then, a wff  is MG3-valid (MG3Ł -valid) (in symbols,

²MG3  / ²MG3Ł ) iff () = 1 for all MG3-interpretations (MG3Ł -
interpretations) . A rule of derivation 1   ⇒  preserves MG3-

validity (MG3Ł -validity) iff  is MG3-valid (MG3Ł -valid) if each  (1 ≤
 ≤ ) is MG3-valid (MG3Ł -valid).

Remark 1.4 (On the label MG3Ł). By the subscript Ł, we intend to remark

that negation is defined as in Łukasiewicz many-valued logics, i.e., ¬ = 1−.
Notice, by the way, that this type of negation could be added to the positive
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fragment of each one of the Gödel logics G4, G5,..., G,...,G∞ (we shall

briefly return to this question in the last section of the paper –Remark 6.25).

Now, it is possible to define on the 3-valued matrices (as on any many-

valued matrix) two different types of consequence relations.

Firstly, MG3-interpretations and MG3Ł -interpretations of sets of wffs

are defined.

Definition 1.5 (MG3- (MG3Ł)-interpretations of sets of wffs). Let  be an
arbitrary MG3-interpretation (MG3Ł -interpretation). Then, for any set of

wffs Γ, (Γ) = inf{() :  ∈ Γ}.
Then, we set

Definition 1.6 (Truth-preserving consequence relation). Let Γ be a set of wffs
and  be a wff. Then, Γ ²1MG3  (Γ ²1MG3Ł ) iff if (Γ) = 1, then () = 1
for each MG3-interpretation (MG3Ł -interpretation) .

Definition 1.7 (Degree of truth-preserving consequence relation). Let Γ be a
set of wffs and  be a wff. Then, Γ ²MG3  (Γ ²MG3Ł ) iff (Γ) ≤ () for
each MG3-interpretation (MG3Ł -interpretation) .

These two ways of understanding the notion of semantical consequence

in many-valued logics are not in general equivalent. Actually, we have:

Proposition 1.8 (On the 1- and -consequence relations). Let Γ be any set
of wffs and  a wff. Then, (1) Γ ²1MG3  iff Γ ²MG3 ; (2) if Γ ²MG3Ł 

then Γ ²1MG3Ł  (the converse, however, does not hold).

Proof. (1) Cf. e.g., [2] (Proposition 2.15); (2) cf. [10] (Proposition 1.16). ¤

We shall refer by symbols ²1MG3, ²1MG3Ł , ²

MG3 and ²MG3Ł to the truth-

preserving and degree of truth-preserving consequence relations defined in

Definition 1.6 and Definition 1.7, respectively.

Then, the logics treated in this paper are the following:

1. G3: The set of all MG3-valid formulas.

2. G3Ł : The set of all MG3Ł -valid formulas.

3. G31 (or, equivalently, G3): The logic determined by the relation ²1MG3
(equivalently, ²MG3).

4. G31Ł : The logic determined by the relation ²1MG3Ł .
5. G3Ł : The logic determined by the relation ²MG3Ł .
It is understood that a logic S is determined by the relation ² if S is

sound and complete w.r.t. ².
Now, in [10] it is proved that G3 and G3Ł can be axiomatized as exten-

sions of Routley and Meyer’s basic positive logic B+: G3(B+) and G3Ł(B+) ,

respectively (see the appendix). And, on the other hand, it is shown in the
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same paper that G31, G31Ł and G3

Ł can be axiomatized by three proof-

theoretical relations: `1G3, `1G3Ł and `G3Ł , respectively, that are coextensive
with ²1MG3, ²1MG3Ł and ²


MG3Ł

, respectively. The consequence relation `1G3
is built upon G3(B+) and the relations `1G3Ł and `G3Ł , upon G3Ł(B+) (see
Section 5 and Section 6).

As it is well-known, the RM-semantics were introduced in the early

seventies of the last century for interpreting relevant logics (cf. [11] and ref-

erences therein). But this semantics can be used for interpreting logics in

general provided these logics contain the basic positive logic B+. Therefore,

it seemed worth the while to try and provide an RM-semantics for the five

logics listed above. And this is in particular the aim of this paper. We think

that this result has some interest from the Universal Logic enterprise per-

spective in the sense that it connects Gödel many-valued logics and similar

systems as, for instance, Łukasiewicz logics, to relevant logics from the point

of view of the latter, the 3-termed relational point of view, in particular. Our

RM-models are of some interest since they are not built upon some strong

positive relevant logic, but on the minimal positive one in the RM-semantics.

Consequently, it is to be expected that they can be adapted, as suggested

above, to other many-valued logics.

The structure of the paper is as follows. (At the end of it, an appendix is

added where the logics in the paper along with some of the theorems of G3 and

G3Ł are listed.) In Section 2, we prove some facts about the different classes

of theories built upon the three basic logics in the paper: BM0, G3 and G3Ł .
The labels G3 and G3Ł are abbreviations for G3(B+) and G3Ł(B+) . These

abbreviations are justified since, as remarked above, G3(B+) and G3Ł(B+)

axiomatize MG3 and MG3Ł , respectively. The logic BM
0 is an extension of

Sylvan and Plumwood’s minimal logic BM (see the appendix). The results in

this section are used in the completeness proofs in the paper. In Section 3,

we provide an RM-semantics for the logic BM0. Leaning on this semantics, in
Section 4, RM-semantics are defined for G3 and G3Ł . In Section 5, an RM-

semantics is presented w.r.t. which G31 is sound and complete. These results

can be considered as the “strong” soundness and completeness of G3. The

development of G31 sets the pattern for the treatment of G31Ł and G3

Ł in the

following section, Section 6. As it was pointed out above, G31Ł and G3

Ł are

axiomatized by defining two different proof-theoretical relations, `1G3Ł and
`G3Ł on G3Ł(B+) . Now, G3Ł is paraconsistent, but G31Ł is not. Thus, G3


Ł

is the “paraconsistent counterpart” we propose to G3 or G31. The paper is

ended with the proof that G3Ł is actually paraconsistent together with some

remarks on the question.
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2. Theories, primeness, consistency

In this section we shall prove some facts about different classes of theories

built upon the logics BM0, G3 and G3Ł (see the definition of these logics and
some theorems and rules of BM0, G3 and G3Ł to be used throughout the
paper in the appendix). These results are used in the completeness proof of

the following sections. We begin by defining the notion of a theory.

2.1. Theories and classes of theories

Definition 2.1 (Theories). Let S be a logic defined on a propositional language

with at least the connectives→ and ∧ (cf. Remark 1.1). An S-theory is a set of
formulas closed under Adjunction (Adj) and provable S-implication (S-imp).

That is,  is an S-theory if whenever ,  ∈ , then ∧ ∈ ; and whenever
→  is a theorem of S and  ∈ , then  ∈ .

The following definition classifies S-theories into different special classes.

Definition 2.2 (Classes of theories). Let  be an S-theory. We set: (1)  is
prime if whenever ∨ ∈ , then  ∈  or  ∈ ; (2)  is regular iff all theo-
rems of S belong to it; (3)  is empty iff no wff belongs to it; (4)  is trivial iff
every wff belongs to it; (5)  is w-inconsistent (inconsistent in a weak sense)
iff for some theorem  of S, ¬ ∈ . Then,  is w-consistent (consistent in
a weak sense) iff  is not w-inconsistent (cf. [9] on the label “w-consistent”);
(6)  is sc-inconsistent (inconsistent according to the standard concept) iff
for some wff  ∧ ¬ ∈ . Then,  is sc-consistent (consistent according
to the standard concept) iff it is not sc-inconsistent; (7)  is complete iff for
every wff ,  ∈  or ¬ ∈ .

Thus, for example, a BM0-theory is a set of formulas closed under Adj
and BM0-imp. And a G3-theory is w-consistent if it does not contain the
negation of a theorem of G3, etc. On the other hand, in what follows, we

will use the term “theory” in general when referring to properties of theories

predicable of BM0-theories, G3-theories and G3Ł -theories. Otherwise, it will
be specified to which type of theories the properties in question are predicable

of.

2.2. Consistency, regularity, non-emptiness, non-triviality

Firstly, we prove a couple of easy but useful propositions on theories in the

general sense just pointed out. (The rules Veq and Efq used below are defined

in the appendix.)

Proposition 2.3 (Regularity and non-emptiness). Any theory  is regular iff
it is non-empty.

Proof. Immediate by the rule Veq. ¤
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Proposition 2.4 (W-consistency and non-triviality). Any theory  is
w-consistent iff it is not trivial.

Proof. Immediate by the rule Efq. ¤

Concerning G3 and G3Ł , we have:

Proposition 2.5 (Closure of G3-(G3Ł -)theories under MP and Veq). Let  be
a G3-theory or a G3Ł -theory. Then,  is closed under MP and Veq. That is,
for any ,  ∈ F , (1) if  →  ∈  and  ∈ , then  ∈ ; (2) if  ∈ ,
then  →  ∈ .

Proof. Immediate by T1 and A11. ¤

Concerning G3, it is proved:

Proposition 2.6 (G3-theories are closed under Efq and Ecq). Any G3-theory

is closed under Efq and Ecq. That is, for any ,  ∈ F , (1) if  ∈ , then
¬→  ∈ ; (2) if  ∧ ¬ ∈ , then  ∈ .

Proof. 1 and 2 are immediate by T6 and T7, respectively. ¤

Proposition 2.7 (Sc-consistenty and w-consistency in G3-theories). Let  be
a G3-theory. Then,  is sc-consistent iff  is w-consistent iff  is not trivial.

Proof. As G3-theories are closed under Ecq, it is clear that any G3-theory is

sc-consistent iff it is non-trivial. Then, Proposition 2.7 follows by Proposition

2.4. ¤

Remark 2.8 (Sc-consistency, w-consistency and regularity). Regular, prime,

complete and w-consistent G3Ł -theories are not in general sc-consistent. But,

on the other hand, it is clear that any regular, sc-consistent G3Ł -theory is w-

consistent. (We shall return to this question in the last section of the paper.)

2.3. Extensions to prime theories

Next, we prove the primeness lemmas.

Lemma 2.9 (Extension to prime, w-consistent theories). Let  be a non-
empty theory and  a wff such that  ∈ . Then, there is a regular, prime,
w-consistent theory  such that  ⊆  and  ∈ .

Proof. Assume the hypothesis of Lemma 2.9. Firstly, notice that  is a regular
and w-consistent theory (Proposition 2.3 and Proposition 2.4). Then, extend

 to a maximal theory  without . It is clear that  is regular and w-
consistent. Finally, it is not difficult to prove that  is prime (cf. [11], Chapter
4, where it is shown how to proceed in the case of an ample class of logic

including B+). ¤

In the case of G3, Lemma 2.9 can be strengthen to:
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Lemma 2.10 (Extension to prime, sc-consistent G3-theories). Let  be a non-
empty G3-theory and  a wff such that  ∈ . Then, there is a regular, prime,
sc-consistent theory  such that  ⊆  and  ∈ .

Proof. Immediate by Proposition 2.7 and Lemma 2.9. ¤

2.4. ∗-images of prime theories
In what follows, we shall use the Routley operator ∗ (cf. [11] and references
therein) in order to define, as in relevant logics, the ∗-images of prime theories.

Definition 2.11 (∗-images of prime theories). Let  be a prime theory. The
set ∗ is defined as follows: ∗ = { : ¬ ∈ }.

Next, we prove a couple of lemmas on the relationship between prime

theories and their *-images.

Lemma 2.12 (Primeness of ∗-images). Let  be a prime theory. Then, ∗ is
a prime theory as well.

Proof. (cf. [11]) Let  be a prime theory. (1) ∗ is closed under BM0-(G3—,
G3Ł -)imp, by Con. (2) 

∗ is closed under Adj, by ¬( ∧ ) → (¬ ∨ ¬)
(A8). (3) ∗ is prime, by (¬ ∧ ¬)→ ¬( ∨) (A7). ¤

Lemma 2.13 (∗-images and negation). (1) Let  be a prime BM0- (G3-) theory.
For any  ∈ F , if  ∈ , then ¬ ∈ ∗. (2) Let  be a prime G3Ł -theory.
For any  ∈ F ,  ∈  iff ¬ ∈ ∗.

Proof. Case 1 follows by A9 ( → ¬¬) and Definition 2.11. Case 2 (from
right to left) follows from A17 (¬¬ → ) and Definition 2.11; the inverse
direction follows by case 1. ¤

In the sequel we prove some facts about the relationship between con-

sistency, regularity and completeness in prime theories and their images. But

in order to do this, we have to distinguish between theories in general and

G3Ł -theories in particular. (Cf. [10].)

Lemma 2.14 (Consistency, regularity, completeness and ∗-images I). Let 
be a prime theory. Then, (1)  is w-consistent iff ∗ is regular; (2)  is sc-
consistent iff ∗ is complete; (3) If  is regular, then ∗ is w-consistent; (4)
If  is complete then ∗ is sc-consistent.

Proof. (Cf. Definition 2.2). Case 1, and case 2 (from left to right) are imme-

diate by Definition 2.2 and Definition 2.11. Case 2 (right to left): let ∗ be
complete. Suppose for reductio that  is sc-inconsistent. Then there is some
wff  such that  ∈  and ¬ ∈ . By Lemma 2.13(1) and Definition 2.11,
 ∈ ∗ and ¬ ∈ ∗, contradicting the completeness of ∗. Now, cases 3 and
4 are proved similarly. ¤
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Lemma 2.15 (Consistency, regularity, completeness and ∗-images II). Let 
be a prime G3Ł -theory. Then, (1)  is regular iff ∗ is w-consistent; (2)  is
complete iff ∗ is sc-consistent.

Proof. 1 and 2 from left to right follow by Lemma 2.14(3) and 2.14(4), re-

spectively. The converses of 1 and 2 are proved similarly as cases 3 and 4 in

Lemma 2.14 except that now Lemma 2.13(2) is used. ¤

In the sequel we prove some facts that will turn out to be essential in

order to prove the completeness of the logics G31Ł and G3

Ł , in the last section

of the paper.

Proposition 2.16 (Sc-consistency or completeness). Let  be a prime G3Ł -
theory. If  is sc-inconsistent, then  is complete.

Proof. Immediate by Definition 2.1, Definition 2.2 and A15. (Notice that if

 is an sc-inconsistent G3-theory, then  is trivial by Proposition 2.7.) ¤

Next, it is proved that for any non-empty G3Ł -theory  lacking a given
formula, there is a prime, sc-consistent theory  without the same formula
(this G3Ł -theory  does not necessarily include ).

Lemma 2.17 (From w-consistent to sc-consistent G3Ł -theories). Let  be a
non-empty G3Ł -theory such that for some wff ,  ∈ . Then, there is a
prime, regular, sc-consistent G3Ł -theory  such that  ∈ .

Proof. Assume the hypothesis of Lemma 2.17. By Lemma 2.9, there is a

prime, regular, w-consistent G3Ł -theory  such that  ⊆  and  ∈ .
Suppose that  is sc-inconsistent. Then,  is complete. Moreover, ¬ ∈ ∗

since  ∈  (by Lemma 2.13(2)). On the other hand, ∗ is prime (Lemma
2.12), regular (Lemma 2.14(1) and sc-consistent (Lemma 2.14(4)). So,  ∈ ∗

(¬ ∈ ∗). Therefore, either  or ∗ is the required  in the statement of
Lemma 2.17. (Notice that  is not necessarily included in ∗). ¤

Finally, we prove that prime, sc-consistent G3Ł -theories are closed under

the rule Con. (It is clear that G3-theories are closed under Con: by A12 and

A9 (→ )→ (¬ → ¬) is an immediate theorem.)
Proposition 2.18 (When G3Łtheories are closed under Con). Let  be a G3Ł -
theory. Then, if  is prime and sc-consistent,  is closed under Con. That is,
for any ,  ∈ F , if →  ∈ , then ¬ → ¬ ∈ .

Proof. Suppose for arbitrary wffs , , (1)  →  ∈ . Suppose further
(2) ¬ ∈  By T4, (3) ( → ) → [¬ ∨ (¬ → ¬)]. So, by 1 and 3,
¬ ∨ (¬ → ¬) ∈  whence, by 2 and primeness, ¬ → ¬ ∈ . Suppose,
on the other hand, (4) ¬ ∈ . By T5, (5) ( → ) → [ ∨ (¬ → ¬)].
By 1 and 5, (6)  ∨ (¬ → ¬) ∈ . But, given 4, by sc-consistency,  ∈ ,
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whence by 6 and primeness, ¬ → ¬ ∈  Therefore,  is closed under
Con. ¤

3. A Routley-Meyer semantics for BM0

We recall that by the label BM0 we refer to the logic BMdn,v,f , that is, to

the result of adding the rules Veq, Efq and the axiom of double negation

→ ¬¬ to Sylvan and Plumwood’s minimal logic BM. (See the appendix.)
In this section, we will define an RM-semantics for BM0 as a preliminary step
for providing an RM-semantics for G3 and G3Ł .

3.1. BM0-models. Soundness of BM0

Definition 3.1 (BM0-models). A BM0-model is a structure (∗ ²) where
 is a set,  is a ternary relation on  and ∗ a unary operation on  subject

to the following definitions and postulates for all , ,  ∈ :

d1.  ≤  =df (∃ ∈ )

P1.  ≤ 

P2. ( ≤  & )⇒ 

P3.  ≤ ⇒ ∗ ≤ ∗

P4.  ≤ ∗∗

Finally, ² is a relation from  to F such that the following conditions

are satisfied for all  ∈ P, ,  ∈ F and  ∈ :

(i) ( ≤  &  ² )⇒  ² 

(ii)  ²  ∧ iff  ²  and  ² 

(iii)  ²  ∨ iff  ²  or  ² 

(iv)  ² →  iff for all   ∈ , ( &  ² )⇒  ² 

(v)  ² ¬ iff ∗ 2 

Definition 3.2 (BM0-validity). A formula  is BM0-valid (in symbols, ²BM 0 )
iff  ²  for all  ∈  in all BM0-models.

Remark 3.3 (BM0-models and relevant models). The only (but crucial) dif-
ference between BM0-models and standard models for relevant logics is the
following. In the latter, a distinguished subset of , , is included. It is
w.r.t. this set that the relation ≤ and, most of all, validity, are defined as

follows:  ≤  =df (∃ ∈ );  is valid iff  ²  for all  ∈  in all

models (cf. [11]). Now, let us drop the postulate P4 from BM0-models. Then,
BM-models (models for Sylvan and Plumwood’s BM) and BM0-models are
indistinguishable from each other save for the point just remarked (cf. [3],

Chapter 6). Nevertheless, this set  will be introduced in the models in the
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last section of the paper (Section 6) in order to define an RM-semantics for

G31Ł .

Before proving soundness we note a couple of useful propositions.

Proposition 3.4 (Hereditary condition). For any BM0-model, ,  ∈  and

 ∈ F , ( ≤  &  ² )⇒  ² .

Proof. Induction on the length of . The conditional case is proved with P2,
and the negation case with P3. ¤

Lemma 3.5 (Entailment lemma). For ,  ∈ F , ²BM 0 →  iff ( ² ⇒
 ² , for all  ∈  in all BM0-models).

Proof. By P1 and Proposition 3.4. ¤

Theorem 3.6 (Soundness of BM0). For each  ∈ F, if `BM 0 , then ²BM 0 .

Proof. The validity of the axioms and rules of B+ and that of A7, A8 and

Con is proved similarly as in the standard semantics (see, e.g., [11]). Then,

the validity of Veq and Efq is immediate by Definition 3.1, Definition 3.2 and

Lemma 3.5. ¤

3.2. Completeness of BM0

In what follows, we proceed into the completeness proof. We begin by defining

the canonical model. As in the preceding section, in what follows, by the term

“theory” we will refer to any arbitrary BM0-theory, G3-theory or G3Ł -theory
(cf. Definition 2.1, Definition 2.2).

Definition 3.7 (Canonical models). Let  be the set of all theories (cf. Def-

inition 2.1) and  be defined on  as follows: for all , ,  ∈  and ,
 ∈ F ,  iff ( →  ∈  &  ∈ ) ⇒  ∈ . Now, let  be the set

of all non-empty, prime, w-consistent theories. On the other hand, let  be

the restriction of  to  , and ∗ be defined on  as follows: for each

 ∈  , ∗ = { : ¬ ∈ } (cf. Definition 2.11). Finally, ² is defined as
follows: for any  ∈  and  ∈ F ,  ²  iff  ∈ . Then, the canonical
model is the structure (   ∗ ²).

Definition 3.8 (The canonical BM0-model). The canonical BM0-model is the
structure (   ∗ ²) where  is the set of all (non-empty, prime,

w-consistent) BM0-theories.

Now, in order to prove that the canonical model is in fact a model, we

need to prove some preliminary facts.

Lemma 3.9 (Defining  for ,  in  ). Let ,  be non-empty elements in
 . The set  = { : ∃[→  ∈  &  ∈ ]} is a non-empty theory such
that .
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Proof. It is easy to prove that  is a theory. Moreover,  is non-empty: let
 ∈ ; by A1 and Proposition 2.3, →  ∈ . So,  ∈ . Finally,  is
immediate by definition of  . ¤
Lemma 3.10 ( and w-consistency). Let ,  be non-empty elements in 

and  a w-consistent member in  such that . Then,  and  are
w-consistent.

Proof. (1) Let  be a theorem. Suppose  is w-inconsistent and let  ∈ .
As  is trivial (Proposition 2.4),  → ¬ ∈ . So ¬ ∈  contradicting the
w-consistency of . (2) Suppose  is w-inconsistent. Then, ¬ ∈  for some
theorem . Now, ¬→ ¬ ∈  (Proposition 2.3). So, ¬ ∈ , contradicting
the w-consistency of . ¤
Lemma 3.11 (∗ is an operation on ). Let  ∈  . Then, ∗ ∈  . That

is, ∗ is an operation on .

Proof. Let  ∈  . By Lemma 2.12, ∗ is prime; by Lemma 2.14(1), ∗ is
regular. Finally, by Lemma 2.14(3), ∗ is w-consistent. ¤
Lemma 3.12 (Extending  and  in  to prime theories). Let ,  be
non-empty elements in  and  ∈  such that . Then, there are ,
 ∈  such that  ⊆ ,  ⊆ ,  and .

Proof. Given the hypothesis of Lemma 3.12, we build up prime non-null

theories ,  such that  and  (cf. [11]). By Lemma 3.10,  and
 are, in addition, w-consistent. ¤
Lemma 3.13 (≤ and ⊆ are coextensive). For any ,  ∈  ,  ≤  iff
 ⊆ .

Proof. Let S refer to any of the logics BM0, G3 or G3Ł . From left to right it

is immediate. So, suppose  ⊆  for ,  ∈  . Clearly S (cf. Definition
2.1). Then, by Lemma 3.12, there is some  in  such that S ⊆  and
. By hypothesis,  i.e.,  ≤  (cf. d1 in Definition 3.1). ¤

Notice that lemmas 3.9-3.13 hold in any of the canonical models defined

in Definition 3.7.

Lemma 3.14 (The canonical BM0-model is a BM0-model). Let (    ∗ 
²) be the canonical BM0-model. Then, it is indeed a BM0-model .

Proof.  is clearly a ternary relation on  and ∗ is an operation on

 (Lemma 3.11). So, we have to prove the following facts.

1. The set  is not empty.

2. Clauses (i)-(v) in Definition 3.1 are satisfied by the canonical BM0-
model.

3. Postulates P1-P4 hold in the canonical BM0-model.
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Now, we shall prove facts 1-3 for any of the canonical models considered

in Definition 3.7. Actually, we prove that facts 1-3 hold in the canonical model

of no matter which extension of BM0 with the same propositional language.
But, for definiteness, we shall refer by S to any of the logics BM0, G3 or G3Ł .

Fact 1 is immediate by Lemma 2.9: the logic S is a non-null w-consistent

theory.

Fact 2: clause (i) is immediate by Lemma 3.13. Clauses (ii), (iii), (v)

and clause (iv) from left to right are proved as in the semantics for E or R

(see, e.g., [11]). So, let us prove clause (iv) from right to left. Suppose for ,
 ∈ F and  ∈  ,  →  ∈ . We prove that there are ,  ∈  such

that ,  ∈  and  ∈ .

The sets  = { : `S → } and  = { : ∃[→  ∈  &  ∈ ]}
are theories such that . Now,  is w-consistent. Otherwise,  ∈ 
(Proposition 2.4), that is, `S  → , and then,  →  ∈  (Proposition
2.3), contradicting the hypothesis. Moreover,  ∈  (by A1). So,  is non-
empty (Lemma 3.9). On the other hand,  ∈  (if  ∈ , then  →  ∈
 contradicting the hypothesis). Therefore,  is w-consistent (Proposition
2.4). Consequently, we have non-empty, w-consistent theories ,  such that
,  ∈  and  ∈ . Now, by Lemma 2.9, there is some  ∈  such

that  ⊆  and  ∈ . Obviously, . Next, by Lemma 3.12, there is
some  ∈  such that  ⊆  and . Clearly,  ∈ . Therefore, we have
prime, non-empty, w-consistent theories ,  such that  ∈  (i.e.,  ² ),
 ∈  ( 2 ) and , as was to be proved.

Fact 3: by using Lemma 3.13, P1-P3 are immediate. Then, P4 follows

by Definition 2.11 and Lemma 2.13. ¤

Finally, we prove the completeness theorem after noting a corollary of

Lemma 2.9.

Corollary 3.15 (Extending BM0 to a member in). Suppose 0BM 0 . Then,
there is some  ∈  such that  ∈ .

Proof. Immediate by Lemma 2.9, since BM0 is, of course, a non-empty theory
lacking . ¤

Theorem 3.16 (Completeness of BM0). For any  ∈ F , if ²BM 0 , then
`BM 0 .

Proof. Suppose 0BM 0 . By Corollary 3.15, there is some  ∈  such that

 ∈ . By Definition 3.8 and Lemma 3.14,  2 . Therefore 2BM 0  by

Definition 3.2. ¤
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4. A Routley-Meyer semantics for G3 and G3Ł

Leaning on the RM-semantics for BM0, we provide an RM-semantics for G3
and G3Ł . That is, for the logics G3(B+) and G3Ł(B+) as axiomatized in the

appendix. We begin by defining G3-models, G3Ł -models and the respective

concepts of validity.

4.1. G3-models, G3Ł -models. Soundness of G3 and G3Ł

Definition 4.1 (G3-models). A G3-model is a structure (∗ ²) where ,
, ∗ and ² are defined similarly as in BM0-models (cf. Definition 3.1) except
that the following definition and postulates hold for all , , ,  ∈ : P1,
P2, P4 and

d2. 2 = (∃ ∈ )( & )

P5. ⇒ 2

P6. ⇒  ≤ 

P7. ⇒ ∗∗

P8. ⇒  ≤ ∗

P9. ⇒ ∗ ≤  or  ≤ 

Definition 4.2 (G3Ł -models). A G3Ł -model is a structure (∗ ²) where
, , ∗ and ² are defined similarly as in BM0-models (cf. Definition 3.1)
except that the following definition and postulates hold for all , , ,  ∈ :
d2, P1, P2, P3, P4, P5, P6, P9 and

P10. ∗∗ ≤ 

P11. ⇒  ≤ ∗ or  ≤ 

P12. ∗ ≤  or  ≤ ∗

Remark 4.3 (G3-(G3Ł -) models are BM
0-models). Notice that P3 is imme-

diate in any G3-model by P7 and d1. Therefore, P1, P2, P3 and P4 hold in

all G3-(G3Ł -) models. Consequently, any G3-(G3Ł -)model is a BM
0-model.

(It is clear, however, that the converse does not hold.)

Definition 4.4 (G3-validity). A formula  is G3-valid (in symbols, ²G3 ) iff
 ²  for all  ∈  in all G3-models.

Definition 4.5 (G3Ł -validity). A formula  is G3Ł -valid (in symbols, ²G3Ł )
iff  ²  for all  ∈  in all G3Ł -models.

Before proving soundness we record a couple of useful propositions.

Lemma 4.6 (Entailment lemma). For ,  ∈ F , (1) ²G3 →  iff ( ² ⇒
 ² , for all  ∈  in all G3-models); (2) ²G3Ł →  iff ( ² ⇒  ² ,
for all  ∈  in all G3Ł -models).
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Proof. Immediate by P1 and Proposition 3.4 (cf. Remark 4.3). ¤

Proposition 4.7 (∗ ² ¬ and  2 ). For any  ∈ F , (1) for any G3-model
and  ∈ , if  2  then ∗ ² ¬; (2) for any G3Ł -model and  ∈ ,  2 
iff ∗ ² ¬.
Proof. By clause (v) in Definition 3.1 and P4, and (in the case of G3Ł -models)

by P10, in addition. ¤

Theorem 4.8 (Soundness of G3). For  ∈ F , if `G3 , then ²G3 .
Proof. The validity of A1-A10, A12 and that of the rules MP, Adj, Pref and

Suf is proved as in the standard semantics for, say, E or R. Then, the validity

of A11 and that of A13 is easily shown by P6 and P8, respectively. So, let us

prove that ( ∨ ¬) ∨ ( → ) (A14) is G3-valid. (The clauses mentioned
below are those in Definition 3.1). Suppose, for reductio, that there are ,
 ∈ F and  ∈  in a G3-model such that  2 ( ∨ ¬) ∨ ( → ). Then
(1)  2 ,  2 ¬ and  2 → . By clause (v), (2) ∗ ² , and by clause
(iv), there are ,  ∈  in this model such that (3) ,  ² ,  2 .
Now, by P9,  ⇒ ∗ ≤  or  ≤ . So, ∗ ≤  or  ≤ . Suppose ∗ ≤ .
By Proposition 3.4 and 2,  ² , contradicting 3. So, suppose  ≤ . By
Proposition 3.4 and 3,  ² , contradicting 1. Therefore, for all  ∈  in all

G3-models and ,  ∈ F ,  ² (∨¬)∨ (→ ), i.e., A14 is G3-valid. ¤

Theorem 4.9 (Soundness of G3Ł). For  ∈ F, if `G3Ł , then ²G3Ł .
Proof. A1-A10, A17 and MP, Adj, Suf, Pref and Con are proved as in the

standard semantics; A11 and A14 are proved as in Theorem 4.8. So, let us

prove the validity of A15 and A16 (we use Lemma 4.6).

( ∧ ¬)→ ( ∨ ¬) (A15) is G3Ł-valid:
Suppose, for reductio, that there are ,  ∈ F and  ∈  in a G3Ł -

model such that  ²  ∧ ¬,  2  ∨ ¬. Then (1)  ² ,  ² ¬,  2 
and  2 ¬. So, by Proposition 4.7(2), (2) ∗ ² ¬. By P12, (3) ∗ ≤ 
or  ≤ ∗. Suppose ∗ ≤ . By Proposition 3.4, and 2, we have  ² ¬,
contradicting 1. Suppose then,  ≤ ∗. By Proposition 3.4 and 1, ∗ ² ¬,
whence, by Proposition 4.7(2),  2 , which contradicts 1. Therefore, A15 is
G3Ł -valid.

¬→ [ ∨ (→ ) (A16) is G3 Ł-valid:
Suppose, for reductio, that there are ,  ∈ F and  ∈  in some

G3Ł -model such that (1)  ² ¬,  2 ,  2  → . Then, there are ,
 ∈  in this model such that (2) ,  ² ,  2 . By 1, (3) ∗ 2 . By 2
and P11,  ≤ ∗ or  ≤ . Suppose  ≤ ∗. By Proposition 3.4 and 2, ∗ ² ,
which contradicts 3. Suppose, then,  ≤ . By Proposition 3.4 and 1,  2 ,
which contradicts 2. Therefore, A16 is G3Ł -valid. ¤
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4.2. Completeness of G3 and G3Ł

Next, we proceed into the proof of completeness. Firstly, the canonical models

are defined.

Definition 4.10 (The canonical G3-model). The canonical G3-model is the

structure (   ∗ ²) where  is the set of all (non-empty, prime,

w-consistent) G3-theories (cf. Definition 3.7).

Definition 4.11 (The canonical G3Ł -model). The canonical G3Ł -model is the

structure (   ∗ ²) where  is the set of all (non-empty, prime,

w-consistent) G3Ł -theories (cf. Definition 3.7).

We have to prove that the canonical G3-model (G3Ł -model) is indeed a

G3-model (G3Ł -model). Then, completeness is an easy consequence of Lemma

2.9. Before proceeding into the proof, notice that, as remarked above, lemmas

3.9-3.13 hold for G3 and G3Ł ; that is, they hold when referring either to G3-

theories or G3Ł -theories.

Lemma 4.12 (The canonical G3-(G3Ł -)model is a G3-(G3Ł -)model). (1) The

canonical G3-model is indeed an G3-model. (2) The canonical G3Ł -model is

indeed a G3Ł -model.

Proof. In order to prove Lemma 4.12, we must show that (1) the set 

is not empty, which follows by lemma 2.9, as in the proof of Lemma 3.14;

(2) clauses (i)-(v) are satisfied in the canonical model (the proof is as in

Lemma 3.14); and (3) the postulates hold canonically –P1-P4, P5, P7 and

P10 are proved as in the standard semantics (cf., e.g., [11]); then, P6 and P8

are easy by A11 and A13, respectively. So, let us prove P9, P11 and P12.

These postulates hold both in the canonical G3-model and in the canonical

G3Ł -model. We prove that they hold in the latter (the proof that they hold

in the former is similar. Actually, notice that P11 and P12 are weak forms

of, respectively, P8 and P120 ( ≤ ∗) –immediate by P8 and P50 (),
in its turn provable by P5. See Proposition 4.14 below).

P9. ⇒ ∗ ≤  or  ≤  holds in the canonical G3Ł -model:
Suppose, for reductio, that there is a G3Ł -model and , ,  ∈  such

that (1)  but (2) ∗ £  and  £ . Then, for some ,  ∈ F ,
we have (cf. Lemma 3.13), (3)  ∈ ∗,  ∈ ,  ∈ ,  ∈ . Then, (4)
¬ ∈ . Now, by A14, the following is a theorem, ( ∨ ¬) ∨ ( → ).
By the primeness of , 3 and 4,  →  ∈ , whence by 1 and 3,  ∈ ,
contradicting 3. Therefore, P9 holds in the canonical G3Ł -model.

P11. ⇒  ≤ ∗ or  ≤  holds in the canonical G3Ł -model:
Suppose, for reductio, that there is a G3Ł -model and , ,  ∈  such

that (1) , but (2)  £ ∗ and  £ . Then, for some ,  ∈ F , we
have (cf. Lemma 3.13), (3)  ∈ ,  ∈ ∗,  ∈ ,  ∈ . Then, (4) ¬ ∈ .
Now, let  be a theorem of G3Ł . By A16, ¬ → [ ∨ ( → ¬)]. So, by
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4,  ∨ ( → ¬) ∈ . As  is prime, (5)  ∈  or  → ¬ ∈ . Suppose
(6)  ∈ . Then, by 4,  ∧ ¬ ∈  and  is sc-inconsistent. Therefore, 
is complete (Proposition 2.16). So,  →  ∈  or ¬( → ) ∈ . Suppose
 →  ∈ . By  ∈  in 3 and closure under MP (Proposition 2.5),  ∈ ,
contradicting our hypothesis 6. Suppose then ¬(→ ) ∈ . As  ∈  and
 is complete, ¬ ∈ , whence by A16,  ∨ ( → ¬) ∈ . By primeness of
 and 3 ( ∈ ),  → ¬ ∈ . Then, by 1, 3 ( ∈ ), ¬ ∈ , contradicting
the w-consistency of . Finally, suppose the second alternative in 5, (7) →
¬ ∈ . By 1, 3 ( ∈ ), ¬ ∈ , contradicting the w-consistency of .
Consequently, P11 holds in the canonical G3Ł -model.

P12. ∗ ≤  or  ≤ ∗ holds in the canonical G3Ł -model:
Suppose, for reductio, that there is a G3Ł -model and  ∈  such that

∗ £  and  £ ∗. Then, for ,  ∈ F (cf. Lemma 3.13), (1)  ∈ ∗,
 ∈ ,  ∈  and  ∈ ∗. Next, by 1, (2) ¬ ∈ . So, by 1 ( ∈ ) and 2,
 ∧ ¬ ∈ . Now, by A15, ( ∧ ¬) → ( ∨ ¬). Then, (3)  ∨ ¬ ∈ ,
whence, by the primeness of ,  ∈  or ¬ ∈ . By 1 ( ∈ ), ¬ ∈ . But
then,  ∈ ∗, contradicting  ∈ ∗ in 1.

The proof that P12 holds in the canonical G3Ł -model ends the proof of

Lemma 4.12. ¤

Finally, we prove the completeness theorems.

Theorem 4.13 (Completeness of G3 and G3Ł). For any  ∈ F , (1) if ²G3 ,
then `G3 ; (2) if ²G3Ł , then `G3Ł .
Proof. Similar to that of Theorem 3.16 by leaning on the appropriate corol-

laries of Lemma 2.9 defined similarly as Corollary 3.15. ¤
4.3. “Disjunctive Contraposition” is an admissible rule in G3Ł

We end this section showing that the rule Disjunctive Contraposition (Dcon)

is an admissible rule of G3Ł . (This fact is essential in the completeness proof

of G31Ł in Section 6.) But before we need an auxiliary proposition.

Proposition 4.14 (The postulate P50). Let (∗ ²) be a G3Ł -model. Then,
for any  ∈ , we have, (P50) .

Proof. Assume the hypothesis of Proposition 4.14. By P1, for some  ∈ ,
(1) . By P5, (2) ⇒ 2. By 1 and 2, (3) 2, whence by
d2, for some  ∈ , (4)  and . By 4 () and d1, (5)  ≤ . By
4 (), 5 and P2, (6) , as was to be proved. ¤

Firstly we show that Dcon preserves G3Ł -validity.

Proposition 4.15 (Dcon preserves G3Ł -validity). The rule Dcon, i.e., for ,
,  ∈ F , (Dcon)  ∨ (→ )⇒  ∨ (¬ → ¬) preserves G3Ł -validity.
That is, if  ∨ (→ ) is G3Ł -valid, then  ∨ (¬ → ¬) is G3Ł -valid.
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Proof. Suppose that there are wffs , ,  such that ²G3Ł  ∨ (→ ) but
2G3Ł  ∨ (¬ → ¬). Then, there is some G3Ł -model and  ∈  such that

(1)  2 ,  2 ¬ → ¬. Then, there are ,  ∈  in this G3Ł -model such

that (2) ,  ² ¬,  2 ¬, whence (3) ∗ ² . On the other hand, by
2 () and P6, (4)  ≤ . By 2 () and d1, (5)  ≤ , and, by 4 and
P3, (6) ∗ ≤ ∗. Now, by 2 () and P9, (7) ∗ ≤  or  ≤ . Suppose (8)
∗ ≤ . By P3 and P10, (9) ∗ ≤ . By 1 ( 2 ), 9 and Proposition 3.4,
(10) ∗ 2 . Now, as  ∨ (→ ) is G3Ł -valid, by 10, (11) 

∗ ² → . On
the other hand, by Proposition 4.14, (12) ∗∗∗. So, by 3, 11 and 12, (13)
∗ ² , whence (14)  2 ¬ and by 5, (15)  2 ¬, contradicting  ² ¬ in

2. So, suppose the second alternative in 7, (16)  ≤ . By 16 and P3, (17)
∗ ≤ ∗. Now, given P12, we have two possibilities: (18)  ≤ ∗ or ∗ ≤ .
Suppose (19)  ≤ ∗. By 1 ( 2 ) and the G3Ł -validity of  ∨ ( → ),
(20)  ² → . By 19, 20 and Proposition 3.4, (21) ∗ ² → . Then, by
Proposition 4.14, (22) ∗∗∗, and by 3, 6 and Proposition 3.4, (23) ∗ ² .
So, by 21, 22 and 23, (24) ∗ ² . Then, by 17, 24 and Proposition 3.4, (25)
∗ ² , whence (26)  2 ¬, contradicting  ² ¬ in 2. So, suppose the

second alternative in 18: (27) ∗ ≤ . By 1 ( 2 ) and 27, (28) ∗ 2 ,
whence by 6, (29) ∗ 2 , contradicting 3.

Consequently, if ²G3Ł  ∨ (→ ), then ²G3Ł  ∨ (¬ → ¬), as was
to be proved. ¤

Finally, we have:

Proposition 4.16 (Dcon is an admissible rule of G3Ł). The rule Dcon is an

admissible rule of G3Ł . That is, for any , ,  ∈ F , (Dcon)  ∨ ( →
)⇒  ∨ (¬ → ¬).
Proof. Immediate by Proposition 4.15 and the soundness and completeness

theorems (Theorem 4.9 and Theorem 4.13(2)). ¤

5. Strong soundness and completeness of G3

In this section, it is proved that G3 is strongly sound and complete w.r.t.

the RM-semantics defined in the preceding section. Or, equivalently put, we

prove that the logic G31 is sound and complete w.r.t. the relation ²1G3 defined
below. The development of G3 along these lines will set the pattern for the

treatment of the logics G31Ł and G3

Ł in the following section.

5.1. Types of consequence relations

We shall consider two types of syntactical as well as of semantical consequence

relations. But, in order to introduce them, we need a preliminary definition.



18 Gemma Robles

Definition 5.1 (Disjunctive rules). Let S be a propositional logic (cf. Remark

1.1) and r. 1   ⇒  be a rule of S. The disjunctive rule corresponding

to r, Dr, is the following ( is any wff), (Dr)  ∨1  ∨2   ∨ ⇒
 ∨.

Now, in some cases, we need to add to a logic S the rule Dr corresponding

to the rule r of S if the “thesis form” of r is not a theorem of S. This may in

particular be the case of G3Ł , where the thesis form of Con, i.e., (→ )→
(¬ → ¬) is not a theorem of G3Ł . In Remark 6.20 it is explained why this
addition has to be made sometimes and why it is especially necessary when

proving completeness in the RM-semantics. Anyway, this eventuality shall be

taken into consideration in the proof-theoretical definitions to follow.

Now, let S be a propositional logic (cf. Remark 1.1) and suppose that an

RM-semantics has been defined for S. Furthermore, unless otherwise stated,

let Γ and  refer to any set of wffs and any wff, respectively, throughout this
and the following section. Then, we set:

Definition 5.2 (Proof-theoretical consequence relation. First sense). Γ `aS 
(“ is a-derivable from Γ in S” or “ is derivable from Γ in a first sense”) iff
there is a finite sequence of wffs 1   such that  is  and for each 

(1 ≤  ≤ ) one of the following is the case: (1)  ∈ Γ; (2)  is an axiom

of S; (3)  is the result of applying any of the primitive rules of derivation

of S to one or more previous formulas in the sequence; (4)  is the result

of applying any of the disjunctive rules of derivation (corresponding to the

primitive rules of derivation), if present, to one or more previous formulas

in the sequence.

Definition 5.3 (Proof-theoretical consequence relation. Second sense). Γ `bS
 (“ is b-derivable from Γ in S” or “ is derivable from Γ in a second
sense”) iff there is a finite sequence of wffs 1   such that  is  and

for each  (1 ≤  ≤ ) one of the following is the case: (1)  ∈ Γ; (2)  is

a theorem of S; (3)  is the result of applying the rule Adj to two previous

formulas in the sequence; (4)  has been derived by S-imp (cf. Definition

2.1 about the rules Adj and S-imp. The rule S-imp reads: for any wffs , ,
`S →  & ⇒ ).

Concerning the semantical relations, we define the first one in the present

section and the second one in the following section.

Definition 5.4 (Semantical consequence relation. First sense). Γ ²S  (“
is a semantical consequence of Γ in S w.r.t. the set  in S-models” or “ is

a semantical consequence of Γ in S in a first sense”) iff if  ² Γ, then  ² 
for all  ∈  in all S-models ( ² Γ iff  ²  for all  ∈ Γ).

Thus, in the case of G3, we have:



A Routley-Meyer semantics for Gödel 3-valued logic and its... 19

Definition 5.5 (The proof-theoretical relation `1G3). Γ `1G3  (“ is derivable
from Γ in G3”) iff Γ `aG3 . That is, Γ `1G3  iff  is a-derivable from Γ in
G3.

Remark 5.6 (No disjunctive rules in `1G3). The introduction of disjunctive
rules in order to define the relation `1G3 is out of the question since the theses
corresponding to the rules Adj, MP, Pref and Suf (i.e., A1, T1, T2 and T3.

See the appendix) are theorems of G3.

Definition 5.7 (The semantical relation ²1G3). Γ ²1G3  (“ is a semantical

consequence of Γ in G3”) iff Γ ²G3 . That is, Γ ²1G3  iff  is a semantical
consequence of Γ w.r.t.  in G3-models.

5.2. Soundness and completeness of G3

Next, we prove:

Theorem 5.8 (Strong soundness of G3). If Γ `1G3  then Γ ²1G3 .
Proof. Let Γ be a set of wffs and  a wff such that Γ `1G3 . The proof of
Γ ²1G3  is by induction on the length of the derivation of  from Γ. If  ∈ Γ
or if it has been derived by Adj, the proof is trivial. And if  is an axiom of G3,
then  ²  for any  ∈  in all G3-models, as shown in Theorem 4.8. Finally,

if  has been derived by MP, Suf or Pref, the proof follows from the fact that
the corresponding theses, i.e., the modus ponens axiom, [∧ (→ )]→ 
(T1), the suffixing axiom ( → ) → [( → ) → ( → )] (T3) and the
prefixing axiom ( → )→ [(→ )→ (→ )] (T2) are theorems of G3
and so, G3-valid by Theorem 4.8. Therefore, for any  ∈  in any G3-model,

if  ² , then  ²  (by Lemma 4.6(a) – Entailment Lemma)  being the

antecedent and  being the consequent of T1, T2 and T3 above. ¤
Next, we proceed into proving completeness. We need the standard con-

cept of “set of consequences of a set of wffs”, which is generally defined as

follows (S refers to a propositional logic, as above –cf. Remark 1.1).

Definition 5.9 (The set of consequences in S of a set of wffs). The set Γ[S]
(“the set of all consequences of Γ in S”) is defined as follows: Γ[S] = { :
Γ `S }. Notice that `S can be understood either in the first sense (Definition
5.2) or in the second sense (Definition 5.3).

And, in particular, we need the following:

Proposition 5.10 (Γ[G3
1] is a regular G3-theory). Let Γ be a set of wffs.

The set Γ[G3
1] (i.e., the set { : Γ `1G3 }) is a regular G3-theory.

Proof. We have to prove that Γ[G3
1] is closed under Adj, G3-imp and

contains all theorems of G3. Now, it is trivial that Γ[G3
1] is closed under

Adj and MP; and it is clear, by Definition of G3 (cf. the appendix) and

Definition 5.9 that Γ[G3
1] contains all theorems of G3. Finally, Γ[G3

1]
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is closed under G3-imp, since it contains all theorems and is closed under

MP. Consequently, Γ[G3
1] is a regular G3-theory. ¤

Finally, we prove completeness.

Theorem 5.11 (Strong completeness of G3). If Γ ²1G3 , then Γ `1G3 .
Proof. Suppose that Γ is a set of wffs and  a wff such that Γ 01G3 . Then,
 ∈ Γ[G3

1]. Now, given that Γ[G3
1] is a non-empty G3-theory such

that  ∈ Γ[G3
1], there is a regular, prime, w-consistent theory  such

that Γ[G3
1] ⊆  and  ∈  (Lemma 2.9). As Γ ⊆ Γ[G3

1], Γ ⊆ . By
Definition 4.10,  ² Γ and  2 , whence Γ 21G3  by Definition 5.7 and

Lemma 4.12, as was to be proved. ¤

6. An RM-semantics for G31Ł and G3

Ł

We provide an RM-semantics for the logics G31Ł and G3

Ł . We follow the

pattern set on for developing G31 in the preceding section. First, G3Ł will

be investigated.

6.1. The logic G3Ł

We begin by defining the appropriate consequence relations (as in Section 5,

and unless otherwise stated, we shall generally refer by Γ and  to any set

of wffs and any wff, respectively).

Definition 6.1 (The proof-theoretical relation `G3Ł ). Γ `G3Ł  iff Γ `bG3Ł .
That is, Γ `G3Ł  iff  is b-derivable from Γ in G3Ł . (Notice that there is no

question of disjunctive rules in Definition 6.1 as `G3Ł is a proof-theoretical
relation in the second sense.)

Definition 6.2 (The semantical relation ²G3Ł ). Γ ²

G3Ł

 ( is a semantical

consequence of Γ in G3Ł ) iff Γ ²G3Ł . That is, Γ ²G3Ł  iff  is a

semantical consequence of Γ w.r.t.  in G3Ł -models.

Next, we prove soundness.

Theorem 6.3 (Soundness of G3Ł ). If Γ `G3Ł  then Γ ²G3Ł .
Proof. The proof is by induction on the length of the derivation of  from

Γ. If  ∈ Γ or  has been derived by Adj, the proof is trivial; and if  is a

theorem of G3Ł , then the proof follows by Theorem 4.9. So, let us consider the

case in which  has been derived by G3Ł -imp. Now, let  ∈  in an arbitrary

G3Ł -model and suppose  ² Γ. We have to prove  ² . By hypothesis of
the case, Γ `G3Ł  and `G3Ł  →  for some wff . By Theorem 4.9,

²G3Ł  → , and by hypothesis of induction,  ² . Then, by Lemma
4.6(2),  ² , as was to be proved. ¤
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Now, before proving completeness, we record the following:

Proposition 6.4 (Γ[G3Ł ] is a regular theory). The set Γ[G3Ł ] (i.e., the
set { : Γ `G3Ł } is a regular theory.
Proof. It is immediate. ¤

Theorem 6.5 (Completeness of G3Ł ). If Γ ²G3Ł , then Γ `G3Ł .
Proof. It is similar to that for G31 in Theorem 5.11 and it is left to the

reader. ¤

6.2. The logic G31Ł . Models, consequence relations, soundness.

In what follows we investigate the logic G31Ł . The key point is the definition

of the consequence relation ²1G3Ł w.r.t. which the logic G31Ł is sound and
complete. And in order to define this relation, G3Ł -models (cf. Definition

4.2) are modified by introducing, as in relevant logics, a designated subset,

, of the set  (cf. Remark 3.3). Firstly, G31Ł -models and G3
1
Ł -validity are

defined.

Definition 6.6 (G31Ł -models). A G3
1
Ł -model is a structure (∗ ²) where

, , ∗ and ² are defined similarly as in G3Ł -models (cf. Definition 4.2) and
 is a non-empty subset of  such that the following postulate holds: (P13)

If  ∈ , then ⇒ ∗∗. Notice that P13 is a restriction of P7 to the
set  (P7 does not generally hold in G3Ł -models).

Definition 6.7 (G31Ł -validity). A formula  is G3
1
Ł -valid (in symbols, ²1G3Ł )

iff  ²  for all  ∈  in all G31Ł -models.

Now, we define the proof-theoretical relation `1G3Ł and then, the seman-
tical relation ²1G3Ł which will be shown to be coextensive with it.

Definition 6.8 (The proof-theoretical relation `1G3Ł ). Γ `1G3Ł  iff Γ `aG3Ł .
That is, Γ `1G3Ł  iff  is a-derivable from Γ in G3Ł . We remark that the

rule Dcon (cf. Proposition 4.16) is one of the rules in `1G3Ł together with Adj,
MP, Pref, Suf and Con (cf. Definition of G3Ł in Appendix I).

Let S be a propositional logic (cf. Remark 1.1) and S-semantics an RM-

semantics with a designated set  in the models. Then, we set:

Definition 6.9 (Semantical consequence relation. Second sense). Γ ²S 
(“ is a semantical consequence of Γ in S w.r.t. the set  in S-models” or

“ is a semantical consequence of Γ in S in a second sense”) iff if  ² Γ,
then  ²  for all  ∈  in all S-models ( ² Γ iff  ²  for all  ∈ Γ).

In the case of G31Ł , we have:
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Definition 6.10 (The semantical relation ²1G3Ł ). (1) Let Γ be a non-empty set
of wffs and  a wff. Then, Γ ²1G3Ł  iff Γ ²G3Ł . That is, Γ ²1G3Ł  iff 

is a semantical consequence of Γ in G3Ł w.r.t the set  in G31Ł -models. (2) If

Γ is the empty set of wffs and  a wff, then Γ ²1G3Ł  iff Γ ²G3Ł . That is,
Γ ²1G3Ł  iff  is G3Ł -valid (i.e., iff  ²  for all  ∈  in all G3Ł -models

–cf. Definition 4.5).

We recall that semantical relations in the first sense are defined in Def-

inition 5.4 and that the relation ²G3Ł was defined in Definition 6.2.

Remark 6.11 (On the condition 2 in Definition 6.10). Condition 2 in De-

finition 6.10 is introduced so that ²1G3Ł and ²

G3Ł

validate the same set of

theorems. Notice, regarding this question, that although for any wff , if
²G3Ł , then ²G3Ł  is immediate, the converse is not, and in fact, has

to be postulated and accounted for in the canonical model (cf. Lemma 6.17).

Next, we prove soundness.

Theorem 6.12 (Soundness of G31Ł). If Γ `1G3Ł  then Γ ²1G3Ł .

Proof. The proof is by induction on the length of the derivation of  from Γ.
(1) Γ is empty. Now, Γ `1G3Ł  iff there is a finite sequence of wffs 1  

such that  is  and each  (1 ≤  ≤ ) is either an axiom or the result of

applying any of the rules MP, Adj, Suf, Pref or Con to one or two previous

formulas in the sequence (cf. Definition of G3Ł in the appendix). Then, Γ ²1G3Ł
 follows by Theorem 4.9 and condition 2 in Definition 6.10. (2) Γ is not
empty and Γ `1G3Ł . We shall prove Γ ²1G3Ł  for any arbitrary G31Ł -model.
If  ∈ Γ or  has been derived by Adj, the proof is trivial; and if  is an

axiom, it is immediate by Theorem 4.9.

Then, concerning MP, Suf and Pref, we have, for any  ∈ , (a)  ²
 →  &  ²  ⇒  ² ; (b)  ²  →  ⇒  ² ( → ) → ( → );
(c)  ² →  ⇒  ² ( → )→ (→ ) by Theorem 4.9 and Lemma 4.6

given that the corresponding theses (T1, T3 and T2. See the appendix) are

theorems of G3Ł .

So, it remains to consider the cases when  has been derived by Con

or Dcon. (1)  has been derived by Con. Suppose then that  is of the form
¬ → ¬ and Γ `1G3Ł  → . By hypothesis of induction Γ ²1G3Ł  → .
Suppose now  ² Γ for some  ∈  and, for reductio,  2 ¬ → ¬. Then,
 ²  → , and on the other hand,  ² ¬ and  2 ¬ for ,  ∈  such

that , whence we have ∗ ² , and by P13 (cf. Definition 6.6), ∗∗.
So, ∗ ²  (∗∗,  ²  → , ∗ ² ), i.e.,  2 ¬, a contradiction.
Consequently,  ² ¬ → ¬, as it was required. (2)  has been derived by

Dcon. The proof is similar by using again P13. Thus, the proof of Theorem

6.12 ends with the proof of Dcon. ¤
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6.3. Completeness of G31Ł

Next, we proceed to proving completeness. Firstly, the canonical model is

defined.

Definition 6.13 (The canonical G31Ł -model). The canonical G3
1
Ł -model is

the structure (     ∗ ²) where    ∗ ² are defined sim-

ilarly as in Definition 4.11 and  is the set of all (non-empty, prime, w-

consistent) sc-consistent G3Ł -theories.

Now, as it was proved in Lemma 4.12, the canonical G3Ł -model is in

fact a G3Ł -model. So, in order to prove that the canonical G3
1
Ł -model is in

fact a G31Ł -model, it suffices to prove the facts recorded in the two lemmas

that follow.

Lemma 6.14 ( is not empty). The set  is not empty.

Proof. Let G3Ł be the set of its theorems and  a wff that is not a theorem.
By Lemma 2.17, there is a prime, regular, sc-consistent G3Ł-theory  such
that  ∈ . ¤

Lemma 6.15 (P13 holds canonically). The postulate P13 holds canonically.

That is, if  ∈  , then ⇒ ∗∗ for any ,  ∈  .

Proof. Let  ∈  and suppose for ,  ∈  and ,  ∈ F , ,
 →  ∈  and  ∈ ∗. We have to prove  ∈ ∗. As  is sc-consistent, it
is closed under Con (Proposition 2.18). So, ¬ → ¬ ∈ . Now, suppose for
reductio,  ∈ ∗. Then, ¬ ∈ , and so, ¬ ∈  (, ¬ → ¬ ∈ ,
¬ ∈ ), i.e.,  ∈ ∗, a contradiction. Therefore,  ∈ ∗, and thus, P13 holds
canonically. ¤

Given the preceding lemmas we have:

Corollary 6.16 (The canonical G31Ł -model is a G3
1
Ł -model ). The canonical

G31Ł -model is indeed a G3
1
Ł -model.

Proof. Immediate by Lemma 4.12(2), Lemma 6.14 and Lemma 6.15. ¤

On the other hand, the following lemma accounts canonically for con-

dition 2 in the definition of ²1G3Ł (Definition 6.10).

Lemma 6.17 (²G3Ł  iff ²G3Ł ). For any wff ,  belongs to every prime,
regular, sc-consistent G3Ł -theory iff  belongs to every prime, regular,

w-consistent G3Ł -theory.

Proof. (1) Left to right: it follows by Lemma 2.17: If  is a prime, regular,
w-consistent theory without , there is a prime, regular, sc-consistent theory
without . (2) Right to left: it is immediate since each regular sc-consistent
theory is w-consistent (cf. Remark 2.8). ¤
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Now, in order to prove completeness we need the following proposition

and primeness lemma.

Proposition 6.18 (Ecq is a derivable rule of G31Ł). The rule Ecq (cf. Proposi-

tion 2.6) is a derivable rule of G31Ł , i.e., for any ,  ∈ F , (Ecq) ∧¬ `1G3Ł
.

Proof. By A2, (1)  ∧ ¬ `1G3Ł  and (2)  ∧ ¬ `1G3Ł ¬. By A11 and 1,
(3)  ∧ ¬ `1G3Ł ¬ → . By A17, Con and 3, (4)  ∧ ¬ `1G3Ł ¬ → ,

whence by 2, 4 and MP, (5)  ∧ ¬ `1G3Ł . ¤

Lemma 6.19 (Primeness). If Γ 01G3Ł , then there is some prime theory Θ

such that Γ ⊆ Θ and Θ 01G3Ł .
Proof. It is similar to that of Lemma 2.10 (cf. [11], Chap. 4, esp. pp.336-

340). ¤

Remark 6.20 (On Lemma 6.19). A warning, however, is in order (cf. e.g.

the clear notes by Brady in [3], §P.3, pp. 7-9). In the aforementioned work

[11], it is shown how to prove a primeness result (similar to that in Lemma

6.19) for logics included in B+ closed under weak rules. A requirement in the

proof is that the logics in question as well as the theories built upon them be

closed under the “disjunctive form” of these rules. Now, there is no problem

with Adj, MP, Pref and Suf since the corresponding theses to these rules (i.e.,

A1, T1, T2 and T3) are theorems of G3Ł . Then, regarding Con, it has been

essential to show that Dcon is an admissible rule of G3Ł (Proposition 4.16)

and, then, to allow the use of Dcon in `1G3Ł -derivations (cf. Definition 6.8).
Theorem 6.21 (Completeness of G31Ł). If Γ ²1G3Ł , then Γ `1G3Ł .
Proof. (1) Γ is empty. Then, let  be a wff such that ²  (cf. Definition

6.9). By Lemma 6.17, ²G3Ł  (cf. Definition 4.5, Definition 6.2), whence by

Theorem 4.13(2), `G3Ł , i.e., `1G3Ł , as was to be proved. (2) Γ is not

empty. Then, suppose for some wff , Γ 01G3Ł . By Lemma 6.19, there is

a prime theory Θ such that Γ ⊆ Θ and Θ 01G3Ł . Then,  ∈ Θ. So, Θ is

regular (Proposition 2.3) and sc-consistent (Proposition 6.18): if Θ contains
a contradiction, then  is derivable. Thus, Θ ∈  . Now, as Γ ⊆ Θ, we have
in terms of the canonical G3Ł -model (cf. Definition 6.13 and Corollary 6.16),

Θ ² Γ and Θ 2 . That is, Γ 2G3Ł , by Definition 6.10, as was to be
proved. ¤

6.4. G3Ł is a paraconsistent logic

We end the paper proving that the logic G3Ł is paraconsistent.

As it is well-known, the notion of a paraconsistent logic can be rendered

as follows (cf. [4] or [8]).
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Definition 6.22 (Paraconsistent logics). Let ° represent a consequence rela-
tion (may it be defined either semantically or proof-theoretically). Then, a

logic S is paraconsistent if, for any wff, , , the rule (Ecq)  ∧ ¬ ° 
does not hold in S.

In other words, a logic S is paraconsistent if theories built upon S are

not necessarily trivial when a contradiction arises. Then, we have:

Proposition 6.23 (G31Ł , G3

Ł and paraconsistency). The logic G3Ł is para-

consistent, but the logic G31Ł is not.

Proof. (1) G31Ł is not paraconsistent: immediate by Proposition 6.18 (G3
1
Ł is

closed under Ecq). (2) G3Ł is paraconsistent: consider a G3Ł -interpretation

 such that () =
1
2 and () = 0 for the th and th propositional

variables  and . Then ( ∧ ¬)  (). So,  ∧ ¬ 2G3Ł  and,

consequently, ECQ does not hold in G3Ł . ¤

Sometimes, a logic is defined to be paraconsistent if at least one of its

sc-inconsistent theories is not trivial. Now, in this sense we have the following:

Proposition 6.24 (sc-inconsistent theories that are w-consistent).

There are regular, prime, w-consistent, complete G3Ł -theories that are sc-

inconsistent (cf. Definition 2.2).

Proof. Let  and  be the th andth propositional variables and consider
the set  = { : `G3Ł  & `G3Ł [∧(∧¬)]→ }. It is easy to prove that
 is a G3Ł -theory. Moreover, it is regular (by A2), but  is sc-inconsistent:
∧¬ ∈ . Anyway,  is not trivial: [( → )∧ (∧¬)]→  is falsified
in MG3Ł (cf. Definition 1.3) by any G3Ł -interpretation  such that () =

1
2

and () = 0. So, 0G3Ł [( → ) ∧ ( ∧ ¬)] →  by Theorem 4.9

and, consequently,  ∈ . Now, by Lemma 2.9, there is a regular, prime,
w-consistent G3Ł -theory  such that  ⊆  and  ∈ . As  ∧¬ ∈ ,  is
sc-inconsistent. Finally,  is complete, as it is w-consistent (Proposition 2.4
and Proposition 2.16). ¤

Finally, we note:

Remark 6.25 (Paraconsisteny of G logics). It is a corollary of Proposition
6.23(2) that all GŁ logics (G3


Ł , G4


Ł  G


Ł  G∞

Ł ) are paraconsistent.

Appendix A.

In this appendix we record the logics treated in this paper together with

some theorems of some of them that we have used in the preceding sections.

Firstly, we define the positive logic B+ on which all of them are based. As it
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is known, Routley and Meyer’s basic positive logic B+ is defined as follows

(cf. [11] and references therein).

Definition A.1 (The logic B+). The logic B+ is axiomatized with the following

axioms and rules

Axioms

A1. → 

A2. ( ∧)→  / ( ∧)→ 

A3. [(→ ) ∧ (→ )]→ [→ ( ∧ )]
A4. → ( ∨) /  → ( ∨)
A5. [(→ ) ∧ ( → )]→ [( ∨)→ ]

A6. [ ∧ ( ∨)]→ [( ∧) ∨ ( ∧ )]
Rules:

Modus Ponens (MP): →  & ⇒ .

Adjunction (Adj):  &  ⇒  ∧
Suffixing (Suf): →  ⇒ ( → )→ (→ )

Prefixing (Pref):  →  ⇒ (→ )→ (→ )

The logic B+ is the basic positive logic in Routley and Meyer’s ternary

relational semantics in the sense that no weaker positive logic can be endowed

with a semantics of this type (cf. [11]). If negation is added, then the basic

logic (in the same sense) is Sylvan and Plumwood’s basic logic BM (cf. [12]).

Definition A.2 (The basic logic BM). The logic BM is axiomatized by adding

the following axioms and rule to B+:

A7. (¬ ∧ ¬)→ ¬( ∨)
A8. ¬( ∧)→ (¬ ∨ ¬)

Contraposition (Con). →  ⇒ ¬ → ¬
Now, the logic BMdn,v,f is the result of adding to BM the axiom Dn and

the rules Veq and Efq, which are defined below. We shall refer to BMdn,v,f

by the abbreviation BM0.

Definition A.3 (The logic BM0). The logic BM0 is axiomatized by adding the
following axiom and rules to BM:

A9. Double negation (Dn). → ¬¬
Verum e quodlibet (Veq). ⇒  → 

E falso quodlibet (Efq). ⇒ ¬→ 
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(Verum e quodlibet means “a true proposition follows from any propo-

sition”; E falso quodlibet means “any proposition follows from a false propo-

sition”).

Next, the logics G3(B+) and G3Ł(B+) are defined. We shall use the ab-

breviations G3 and G3Ł to refer to G3(B+) and G3Ł(B+) , respectively.

Definition A.4 (The logic G3). The logic G3 can be axiomatized by adding

the following axioms to B+:

A10. [→ (→ )]→ (→ )

A11. → ( → )

A12. (→ ¬)→ ( → ¬)
A13. ¬→ (→ )

A14. ( ∨ ¬) ∨ (→ )

Definition A.5 (The logic G3Ł). The logic G3Ł can be axiomatized by adding

the following axioms and rule to B+: A9, A10, A11, A14, Con, and in addi-

tion,

A15. ( ∧ ¬)→ ( ∨ ¬)
A16. ¬→ [ ∨ (→ )]

A17. ¬¬→ 

Remark A.6 (On the axiomatization of G3 and G3Ł). In [10], G3(B+) and

G3Ł(B+) are axiomatized w.r.t. the positive fragment FD+ of Anderson and

Belnap First Degree Entailments Logic FD (see [1]). The logic FD+ is the

result of restricting B+ as follows, A3 and A4 are restricted to the rule forms

(A30)  →  &  →  ⇒  → ( ∧ ) and (A40)  →  &  →
 ⇒ ( ∨ ) → , respectively, and Pref and Suf to the rule Transitivity
(Trans) →  &  →  ⇒ → . Therefore, FD+ is a sublogic of B+.
Consequently, G3(B+) and G3Ł(B+) can be axiomatized w.r.t. B+, as they are

axiomatized w.r.t. FD+. Here we choose B+ because, as remarked above, B+
is the minimal positive logic in the RM-semantics: no weaker positive logic

can be interpreted in this semantics.

Remark A.7 (BM0 is a sublogic of G3 and G3Ł). The logic BM0 is a sublogic
of G3 and G3Ł .

Proof. The easiest way is to use the matrices MG3 and MG3Ł (in case a

tester is needed, the reader can use that in [7]). ¤

We end the appendix by listing some theorems of G3 and G3Ł that are

used throughout the paper (use, as above, MG3 and MG3Ł).
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(1) Theorems and rules of both G3 and G3Ł are:

A7. (¬ ∧ ¬)→ ¬( ∨)
A8. ¬( ∧)→ (¬ ∨ ¬)
A9. → ¬¬
A10. [→ (→ )]→ (→ )

A11. → ( → )

A14. ( ∨ ¬) ∨ (→ )

A15. ( ∧ ¬)→ ( ∨ ¬)
A16. ¬→ [ ∨ (→ )]

Veq. ⇒  → 

Efq. ⇒ ¬→ 

Con. →  ⇒ ¬ → ¬
Dcon.  ∨ (→ )⇒  ∨ (¬ → ¬)
T1. [ ∧ (→ )]→ 

T2. ( → )→ [(→ )→ (→ )]

T3. (→ )→ [( → )→ (→ )]

T4. (→ )→ [¬ ∨ (¬ → ¬)]
T5. (→ )→ [ ∨ (¬ → ¬)]

(2) Theorems and rules of G3:

T6. → (¬→ )

T7. ( ∧ ¬)→ 

‘E contradictione quodlibet’ (Ecq).  ∧ ¬⇒ 
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