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Abstract

Let us refer by MK3 to Kleene’s strong 3-valued matrix. An implicative expansion
of MK3 is natural if the conditional function defining it verifies modus ponens,
assigns a designated value to a conditional whenever it assigns the same value
to its antecedent and its consequent, and, finally, it coincides with the classical
conditional function when restricted to the “classical” values t and f. Two are the
main results of this paper. (1) It is proven that, from the viewpoint of functional
strength, there is only one 3-valued natural implication expansion of MK3 with
the variable-sharing property, the logic we dub L3VSP. (2) It is shown that L3VSP

is a significant and strong logic that can be seen from different perspectives, one
of them being to consider it an expansion of classical positive propositional logic.
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1 Introduction

A propositional logic L has the variable-sharing property (VSP) if in all L-theorems
of implication form antecedent and consequent share at least a propositional variable.
Given that in propositional logic the non-logical content is conveyed by propositional
variables, if L is a propositional logic with the VSP, then it is free from “paradoxes of
relevance” in the sense that L does not contain theorems of implication form where
the semantical content of antecedent and consequent is disjoint. Anderson and Belnap
consider the VSP a necessary property a relevant logic has to fulfill (cf. [1, 4]), but some
authors go so far as to consider that “the concept of relevant logic is coextensional
with that of having the variable-sharing property” (cf. [19, p. 28]).

On the other hand, Kleene’s strong 3-valued matrix MK3 (our label) was defined
in [16] in the context of the treatment of partial recursive functions. The matrix MK3
can be rendered as shown in Definition 2.3 below, The connectives are conjunction,
disjunction and negation. We take 1 and 2 as designated values (cf. Remark 2.4). Then
“1” represents “both true and false”, while “2” represents “true only” and “0” stands
for “false only”.

Finally, the notion of a “natural conditional” is here understood as an extension
of that introduced in [27] and can be described as shown in Definition 2.5. That is, a
conditional function, f→, expanding MK3 is natural if the three following conditions
are fulfilled: (1) f→ coincides with the classical conditional function when restricted to
the values 0 and 2; (2) f→ satisfies modus ponens; (3) f→ assigns a designated value
to a conditional whenever the same value is assigned to its antecedent and consequent
(cf. [22]. Of course, there are stricter notions than those defined in [22] and [27]; cf.,
e.g., [2]).

Now, in [22] it is proved that there are exactly 11 3-valued natural f→-functions
expanding MK3 defining relevant conditionals in the sense that A → B (cf. Definition
2.1) is falsified if A and B do no have at least a variable in common.

Well then, two are the main results of this paper. (1) It is proven that, from the
standpoint of functional strength, the 11 implicative expansions of MK3 referred to
above actually determine only one logic, since they are functionally equivalent to each
other. This unique logic (but cf. the concluding remarks to the paper), unique in the
sense just remarked (that is, it is the only 3-valued implication expansion with the VSP
of MK3, from the functional viewpoint), is dubbed L3VSP. (2) It is shown that L3VSP

is not an artificial construct, but a logic with remarkable properties among which we
note, without trying to be exhaustive, the following (cf. also §5 and the appendix to
the paper): natural conditionals in the sense of [22]; self-extensionality (i.e., “replace-
ment”); considerable syntactical strength; considerable expressive power (for example,
the important 3-valued logics Pac and RM3 —cf., e.g., [15]— are definable in L3VSP),
and finally, its being interpretable in the clear and important two-valued Belnap-Dunn
semantics.

The introduction is ended by explaining the structure of the paper. But before
doing this, let us point out some notes on many-valued logics with the VSP.

It is known that there are infinitely many logics with the VSP (cf. [12]). Further-
more, some many-valued logics with the VSP have been studied in the literature. For
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example, the logic determined by Belnap’s eight element matrix M0 (cf. [4], axioma-
tized in [8]); or the logic characterized by Meyer’s six element Crystal lattice, CL, also
axiomatized in [8]. But it does not seem easy to interpret the meaning of the logical
values in these matrices in an intuitively clear way. However, the meaning of the three
truth-values in MK3 and its 3-valued expansions is crystal-clear.

The paper is organized as follows. In §2, some preliminary notions together with
the 11 implicative expansions of MK3 with the VSP are defined. In §3 it is proved
that the aforementioned 11 implicative expansions are functionally equivalent to each
other and so determine only one logic, L3VSP. It is also proved that the logics Pac
(“Paraconsistency”) and RM3 (“the strongest logic in the family of relevance logics”
—[2, p. 276]) are functionally included in L3VSP (in addition to [2], cf. [1] and [7]
about RM3; [15] and references therein, about Pac). In §4, L3VSP is presented as
an expansion of classical positive propositional logic and, finally, in §5, the paper is
ended with some concluding remarks on the results obtained and some observations
on possible future work to be done in the topic. We have added an appendix including
some complementary material as well as a proof of some of the properties L3VSP sports
that have been referred to throughout this introduction.

2 The class MI3VSP of implicative expansions of
MK3

In this section, we define the class MI3VSP of matrices. The label MI3VSP intends to
abbreviate “natural implicative expansions of Kleene’s strong matrix MK3 with the
variable-sharing property (VSP)”. We begin by stating some prior concepts.
Definition 2.1 (Some preliminary notions). The propositional language consists of a
denumerable set of propositional variables p0, p1, ..., pn, ..., and some or all of the fol-
lowing connectives: → (conditional or implication1), ∧ (conjunction), ∨ (disjunction)
and ∼ (negation). The biconditional (↔) and the set of formulas (wffs) are defined in
the customary way. A,B,C, etc. are metalinguistic variables. Then the ensuing con-
cepts are understood in a fairly standard sense: logical matrix M, M-interpretation,
M-consequence and M-validity. Also, the following notions: functions definable in a
matrix, functional inclusion and functional equivalence (cf., e.g., [22, §2] or [23]).
Remark 2.2 (Logics). As suggested in the introduction, in this paper, logics are
primarily viewed as M-determined structures, i.e., as structures of the type (L,⊨M)
where L is a propositional language and ⊨M is a (consequence) relation defined in L
according to the logical matrix M as follows: for any set of wffs Γ and wff A, Γ ⊨M A
iff I(A) ∈ D whenever I(Γ) ∈ D for all M-interpretations I (I(Γ) ∈ D iff I(A) ∈ D
for all A ∈ Γ; D is the set of designated values in M). Thus, from this viewpoint, we
can safely travel back and forth from matrices to logics, given the aims of this paper.

Nevertheless, logics are sometimes defined as Hilbert-type axiomatic systems, the
notions of “theorem” and “proof from premises” being the usual ones. Furthermore, in

1We follow Anderson and Belnap’s “Grammatical Propaedeutic”, Appendix to [1]: “The principal aim of
this piece is to convince the reader that it is philosophically respectable to “confuse” implication and entail-
ment with the conditional, and indeed philosophically suspect to harp on the dangers of such “confusion””
([1, p. 473].
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a derived or secondary sense, we can regard an M-determined logic as a, say, Hilbert-
type system (or a natural deduction system or a Gentzen-type system) L such that
Γ ⊢L A iff Γ ⊨M A, where ⊨M is the consequence relation defined above and Γ ⊢L A
means “A is provable from Γ in L”.
Definition 2.3 (Kleene’s strong 3-valued matrix). The propositional language consists
of the connectives ∧,∨,∼. Kleene’s strong 3-valued matrix, MK3 (our label), is the
structure (V, D, F) where (1) V = {0, 1, 2} with 0 < 1 < 2; (2) D = {1, 2}; (3)
F = {f∧, f∨, f∼} where f∧ and f∨ are defined as the glb (or lattice meet) and the lub
(or lattice join), respectively, and f∼ is an involution with f∼(2) = 0, f∼(0) = 2 and
f∼(1) = 1. We display the tables for ∧, ∨ and ∼:

∧ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

∨ 0 1 2
0 0 1 2
1 1 1 2
2 2 2 2

∼ 0
0 2
1 1
2 0

Remark 2.4 (On designated values in MK3). Kleene does not seem to have considered
designated values in [16], §64, although he remarks: “The third “truth-value” u is thus
not on a par with the other two t and f in our theory. Consideration of its status will
show that we are limited to a special kind of truth-value” ([16, p. 333]). We use 2, 0
and 1 instead of t, f and u, respectively, used by Kleene. The former have been chosen
in order to use the tester in [13], in case one is needed. Also, to put in connection the
results in the present paper with previous work by us. Finally, we note that the set D
can be restricted to {2}.

On the other hand, we set:
Definition 2.5 (Natural conditionals). Let V and D be defined as in Definition 2.3.
Then, an f→-function on V defines a natural conditional if the following conditions
are satisfied:
1. f→ coincides with the f→-function for the classical conditional when restricted to

the subset {0, 2} of V.
2. f→ satisfies modus ponens, that is, for any a, b ∈ V, if a → b ∈ D and a ∈ D,

then b ∈ D.
3. For any a, b ∈ V, a → b ∈ D if a = b.

Remark 2.6 (Natural conditionals in Tomova’s original paper). We note that natural
conditionals are defined in [27] exactly as in Definition 2.5 except for condition (3),
which reads there as follows: for any a, b ∈ V, a → b ∈ D if a ≤ b.
Definition 2.7 (The class MI3VSP). In [22, Appendix III, Proposition C.9], it is
proved that the only natural implicative expansions of MK3 determining logics (in the
sense of Remark 2.2) with the VSP are the ones built up with the conditional described
by the following truth tables:

(t1)

→ 0 1 2
0 2 0 2
1 0 1 0
2 0 0 2

(t2)

→ 0 1 2
0 2 0 2
1 0 1 1
2 0 0 2

(t3)

→ 0 1 2
0 2 0 2
1 0 1 2
2 0 0 2
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(t4)

→ 0 1 2
0 2 0 2
1 0 1 0
2 0 1 2

(t5)

→ 0 1 2
0 2 0 2
1 0 1 0
2 0 2 2

(t6)

→ 0 1 2
0 2 1 2
1 0 1 0
2 0 0 2

(t7)

t7 0 1 2
0 2 1 2
1 0 1 0
2 0 1 2

(t8)

→ 0 1 2
0 2 1 2
1 0 1 0
2 0 2 2

(t9)

→ 0 1 2
0 2 2 2
1 0 1 0
2 0 0 2

(t10)

→ 0 1 2
0 2 2 2
1 0 1 0
2 0 1 2

(t11)

→ 0 1 2
0 2 2 2
1 0 1 0
2 0 2 2

Then the class MI3VSP is the class of all 3-valued natural implicative expansions of
MK3 with the VSP. It consists of the matrics M1, M2,..., M11. Each Mi (1 ≤ i ≤ 11)
is the structure (V, D, F) where V, D and f∧, f∨, f∼ ∈ F are as in Definition 2.3, and
f→ is defined according to table ti.

Finally, we set:
Definition 2.8 (The LMi-logics). The logic LMi (1 ≤ i ≤ 11) is the logic determined
by the matrix Mi in the sense explained in Remark 2.2: for any set of wffs Γ and wff
A, Γ ⊨LMi A iff I(A) ∈ {1, 2} whenever I(Γ) ∈ {1, 2} for all Mi-interpretations I
(I(Γ) ∈ {1, 2} iff I(A) ∈ {1, 2} for all A ∈ Γ).

Then the term LMi-logic (s) can be used to refer to the logics determined by the
elements in MI3VSP generally.

In the next section, it is proved that, from the viewpoint of functional strength, the
LMi-logics are equivalent different versions of the same logic we name L3VSP (natural
3-valued logic with the VSP).

3 LM1-LM11 are functionally equivalent

In this section, it is proved that the logics LM1 through LM11 introduced in Definition
2.8 are functionally equivalent to each other. Consequently, these 11 expansions of
Kleene’s strong logic are just different formulations of the same logic we have named
L3VSP with a different choice of the primitive implication connective (nevertheless,
cf. the concluding remarks to the paper). It will also be proved that the 3-valued
paraconsistent logic Pac and “the strongest logic in the family of relevance logics” (cf.
[2, p. 276]), RM3, are functionally included in L3VSP (cf. [1, 7] and references therein
about RM3; [15] and references therein about Pac).

We begin by investigating the functional relations the logics LM1, LM2, LM3, LM6
and LM9 maintain to each other (Lemmas 3.2-3.5), but firstly, we note a remark on
the proofs to follow.
Remark 3.1 (Functions and truth-tables. On displaying proofs of definability). Let
f∗ be a function defined in V = {0, 1, 2}. In this paper, f∗ is usually represented by
means of a truth-table t∗ (or simply ∗), as for instance, it is the case with ∧, ∨ and
∼ in MK3 (Definition 2.3). In addition, by k∗ (or simply ∗) we refer to the connective
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defined by t∗. Now, let M be MK3 or an expansion of it. The proof that a given unary
or binary function f∗ is definable in M is easily visualized by using the connectives
corresponding to the functions in M needed in the proof in question. In general, proofs
provided below are simplified as just indicated (A, B refer to any wffs —cf. Definition
2.1) On the other hand, in order to prove that an LMi-logic is functionally included in
another one, it is clear that it suffices to show that the implication table of the former
is definable in the latter, given that we treat only implicative expansions of MK3.
(We will simply say “equivalent logics” instead of “functionally equivalent logics”,

“inclusion” instead of “functional inclusion”, etc.) Finally, by
i→ (1 ≤ i ≤ 11), we

refer to the conditional or implication (cf. Note 1) given by table ti. (In case a tester
is needed, the one in [13] can be used.)
Lemma 3.2 (LM2 and LM6; LM3 and LM9).
1. LM2 and LM6 are equivalent to each other.
2. LM3 and LM9 are equivalent to each other.

Proof. We set:

(1a) A
6→ B =df ∼B

2→ ∼A

(1b) A
2→ B =df ∼B

6→ ∼A

(2a) A
9→ B =df ∼B

3→ ∼A

(2b) A
3→ B =df ∼B

9→ ∼A

Lemma 3.3 (LM1, LM2 and LM3).
1. LM1 is included in LM2.
2. LM1 is included in LM3.

Proof. Given Lemma 3.2, we set:

(1) A
1→ B =df (A

2→ B) ∧ (A
6→ B)

(2) A
1→ B =df (A

3→ B) ∧ (A
9→ B)

Lemma 3.4 (LM1, LM6 and LM9). Both LM9 and LM6 are included in LM1.

Proof. We set:

(1) A
9→ B =df A

1→ (A
1→ B)

(2) A
6→ B =df (A

9→ B) ∧ [B ∨ (A
1→ B)]

The ensuing corollary follows from the lemmas proved above.
Lemma 3.5 (LM1, LM2, LM3, LM6 and LM9). The logics LM1, LM2, LM3, LM6
and LM9 are equivalent.

Proof. The proof is immediate by Lemmas 3.2, 3.3 and 3.4.

Next, it is shown that LM1 is included in LM4 and in LM5 (Lemma 3.6). Then
we investigate the relations between LM4, LM7 and LM10 (Lemma 3.7), on the one
hand, and those between LM5, LM8 and LM11, on the other hand (Lemma 3.8).
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Lemma 3.6 (LM1, LM4 and LM5). LM1 is included in both LM4 and LM5.

Proof. We set:

(1) A
1→ B =df (A

4→ B) ∧ (∼B
4→ ∼A)

(2) A
1→ B =df (A

5→ B) ∧ (∼B
5→ ∼A)

Lemma 3.7 (LM4, LM7 and LM10). The logics LM4, LM7 and LM10 are equivalent
to each other.

Proof. We set:

(1) A
7→ B =df (A

4→ B) ∨ (A
6→ B)

(2) A
4→ B =df (A

7→ B) ∧ [A ∨ (∼B
7→ ∼A)]

(3) A
10→ B =df A

4→ (A
4→ B)

(4) A
4→ B =df (A

10→ B) ∧ [A ∨ (∼B
10→ ∼A)]

(Notice that table t6 can be used in (1) by virtue of Lemmas 3.5 and 3.6.)

Lemma 3.8 (LM5, LM8 and LM11). The logics LM5, LM8 and LM11 are equivalent
to each other.

Proof. We set:

(1) A
11→ B =df A

5→ (A
5→ B)

(2) A
5→ B =df (A

11→ B) ∧ [A ∨ (∼B
11→ ∼A)]

(3) A
8→ B =df (A

11→ B) ∧ [B ∨ (A
5→ B)

(4) A
5→ B =df (A

8→ B) ∧ [A ∨ (∼B
8→ ∼A)]

In what follows, it is shown that LM4 (resp., LM11) is included in LM1 (resp.,
LM10). Then LM4 and LM5 are proved equivalent (Lemmas 3.9, 3.10 and 3.11).
Lemma 3.9 (LM1, LM4). LM4 is included in LM1.

Proof. Consider the connective k12 defined by the ensuing table:

t12 0 1 2
0 0 0 0
1 0 1 0
2 0 1 0

Given LM1, table 4 is defined as follows: A
4→ B =df (A

1→ B) ∨ (A k12 B). So,
let us defined t12. We use the connectives k13, k14 given by the tables t13, t14.

t13 0 1 2
0 2 0 2
1 0 1 1
2 0 1 2

t14 0 1 2
0 0 1 0
1 2 1 0
2 2 1 0

which are defined as follows: A k13 B =df (A
1→ B)∨(A∧B); A k14 B =df ∼[B∨(A

1→
B)]. Then t12 is defined as follows: A k12 B =df (A k13 B) ∧ (A k14 B)
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Lemma 3.10 (LM11 and LM10). LM11 is included in LM10.

Proof. We need the connective k12 defined in Lemma 3.9 by using LM1 (notice that
LM1 is included in LM4 —Lemma 3.6— and that LM4 and LM10 are equivalent by
Lemma 3.7). Also, we use the connectives k15, k16 and k17 given by the ensuing tables:

t15 0 1 2
0 2 0 2
1 0 1 2
2 2 0 2

t16 0 1 2
0 0 0 0
1 2 1 2
2 0 2 0

t17 0 1 2
0 0 0 0
1 0 1 0
2 0 2 0

which are defined as follows: A k15 B =df (A k12 B)
4→ (A ∨ B); A k16 B =df

∼(∼B k15 ∼A); A k17 B =df (A k16 B) k16 (A k12 B). Finally, t11 is defined as

follows: A
11→ B =df (A

10→ B) ∨ (A k17 B).

Lemma 3.11 (LM4 and LM5). LM4 and LM5 are equivalent.

Proof. Given Lemmas 3.7, 3.8 and 3.10, it suffices to prove that LM4 is included in

LM5. We set: A
4→ B =df (A

5→ B ∧ (∼A ∨B).

Finally, we have:
Theorem 3.12 (LM1 through LM11). LM1 through LM11 are equivalent to each
other.

Proof. Consider the groups of logics (a) = {LM1, LM2, LM3, LM6, LM9}; (b) = {LM4,
LM7, LM10}; (c) = {LM5, LM8, LM11}. By Lemmas 3.5, 3.7 and 3.8, it is proved
that each one of these groups consists of logics equivalent to each other. Then, given
the lemmas just quoted, the logics in (b) and (c) are equivalent by Lemma 3.11; and
logics in (a) and in (b) (so in (c)) are equivalent by Lemmas 3.6 and 3.9. Consequently,
the 11 LMi-logics introduced in Definition 2.8 are equivalent to each other.

It follows from Theorem 3.12 that L3VSP can be defined as the logic determined
by any of the matrices in Definition 2.7 (but cf. the concluding remarks to the paper).

The section is ended by showing that the logics Pac and RM3 are included in
L3VSP. These logics are determined by the implicative expansions of MK3 given by
the following tables

Pac 0 1 2
0 2 2 2
1 0 1 2
2 0 1 2

RM3 0 1 2
0 2 2 2
1 0 1 2
2 0 0 2

We have:
Proposition 3.13 (Pac, RM3 and L3VSP). The logics Pac and RM3 are included in
L3VSP.

Proof. Given Theorem 3.12, the ensuing definitions are sufficient:

(1) A
Pac→ B =df (A

10→ B) ∨ (A
3→ B)
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(2) A
RM3→ B =df (A

9→ B) ∨ (A
3→ B)

4 L3VSP as an expansion of classical positive
propositional logic

In this section, it is shown how to use the fact that Pac (so classical positive propo-
sitional logic) is definable in L3VSP in order to give easy Hilbert-style formulations
(H-formulations) of L3VSP. The H-formulations we define present L3VSP as an expan-
sion of classical positive propositional logic. We use, say, the implication of LM1 for
axiomatizing L3VSP. In the appendix to the paper, an alternative axiomatization is
sketched by using that of LM10.

In order to give an H-formulation for L1, we rely upon a strategy based upon
Belnap-Dunn two-valued semantics introduced by Brady in [7] (cf. also [8, 9, 21]) as
illustrated for 3-valued logics in some papers such as [21, 25].

As it is well-known, Belnap-Dunn two-valued semantics (BD-semantics) is char-
acterized by the possibility of assigning T , F , both T and F or neither T not F to
the formulas of a given language (cf. [5, 6, 10, 11]); T represents truth, F represents
falsity). Concerning 3-valued logics, two variants of BD-semantics, overdetermined
BD-semantics (o-semantics) and underdetermined BD-semantics (u-semantics) can be
considered. Formulas can be assigned T , F or both T and F in the former; T , F or
neither T nor F in the latter (cf. [21, 25]). U-semantics is especially adequate to 3-
valued logics determined by matrices with only one designated value; o-semantics, for
those determined by matrices where only one value is not designated.

Given an implicative expansion of MK3, M, with 1 and 2 as designated values, the
idea for defining an o-semantics, Mo, equivalent to the matrix semantics based upon
M is simple: a wff A is assigned both T and F in Mo iff A is assigned 1 in M. Next,
A is assigned T (resp., F ) in Mo iff it is not assigned 0 (resp., 2) in M. (Notice that,
unlike in u-semantics, interpretation of formulas cannot be empty in o-semantics.)

Then below an o-semantics for LM1 is introduced by defining the notion of an
LM1-model and the accompanying notions of LM1-consequence and LM1-validity.
Definition 4.1 (LM1-model). An LM1-model is a structure (K, I) where (i) K =
{{T}, {F}, {T, F}}, and (ii) I is an LM1-interpretation from the set of all wffs to K,
this notion being defined according to the following conditions for each propositional
variable p and wffs A, B: (1) I(p) ∈ K; (2a) T ∈ I(∼A) iff F ∈ I(A); (2b) F ∈ I(∼A)
iff T ∈ I(A); (3a) T ∈ I(A ∧ B) iff T ∈ I(A) & T ∈ I(B); (3b) F ∈ I(A ∧ B) iff
F ∈ I(A) or F ∈ I(B); (4a) T ∈ I(A∨B) iff T ∈ I(A) or T ∈ I(B); (4b) F ∈ I(A∨B)
iff F ∈ I(A) & F ∈ I(B); (5a) T ∈ I(A → B) iff [T /∈ I(A) & T /∈ I(B)] or
[T /∈ I(A) & F /∈ I(B)] or [T ∈ I(A) & F ∈ (A) & T ∈ I(B) & F ∈ I(B)]
or [F /∈ I(A) & F /∈ I(B)]; (5b) F ∈ I(A → B) iff [T ∈ I(A) & F ∈ I(A)] or
[T ∈ I(B) & F ∈ I(B)] or [T ∈ I(A) & F ∈ I(B).
Definition 4.2 (LM1-consequence, LM1-validity). Let M be an LM1-model. For any
set of wffs Γ and wff A:
1. Γ ⊨M A (A is a consequence of Γ in M) iff T ∈ I(A) whenever T ∈ I(Γ).

(T ∈ I(Γ) iff ∀A ∈ Γ(T ∈ I(A)); F ∈ I(Γ) iff ∃A ∈ Γ(F ∈ I(A)).)
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2. Γ ⊨LM1 A (A is a consequence of Γ in LM1-semantics) iff Γ ⊨M A for each
LM1-model M.

3. In particular, ⊨LM1 A (A is valid in LM1-semantics) iff ⊨M A for each LM1-
model M (i.e., iff T ∈ I(A) for each LM1-model M).

By ⊨LM1 we shall refer to the relation just defined.
Now, given Definition 2.7 together with the adjoined notions of M1-interpretation

and M1-validity (cf. Definition 2.1) and Definitions 4.1 and 4.2. We easily prove:
Proposition 4.3 (Coextensiveness of ⊨M1 and ⊨LM1). For any set of wffs Γ and a
wff A, Γ ⊨M1 A iff Γ ⊨LM1 A. In particular, ⊨M1 A iff ⊨LM1 A.

Proof. See the proof of Proposition 7.4 in [21] where the simple proof procedure is
exemplified in the case of the 24 3-valued natural implicative logics introduced by
Tomova in [27].

Proposition 4.3 simply formalizes the intuitive translation (explained above) of
the matrix semantics based upon M1 into Belnap and Dunn’s two-valued type LM1-
semantics. Nevertheless, it is a useful proposition, since it gives us the possibility of
proving soundness of LM1 w.r.t. ⊨M1 while proving completeness w.r.t. ⊨LM1 by using
a canonical model construction.

But let us now define the H-system HLM1. We use
1→, ∧, ∨ and ∼ as primitive

connectives (⊃ is interpreted by table Pac —cf. Proposition 3.13)2

Definition 4.4 (The system HLM1). The system HLM1 can be formulated as fol-
lows (A1, ..., An ⇒ B means “if A1, ..., An, then B”; the superindex “1” above → is
dropped):

Axioms:

A1. A ⊃ (B ⊃ A)

A2. [A ⊃ (B ⊃ C)] ⊃ [(A ⊃ B) ⊃ (A ⊃ C)]

A3. [(A ⊃ B) ⊃ A] ⊃ A

A4. (A ∧B) ⊃ A; (A ∧B) ⊃ B

A5. A ⊃ [B ⊃ (A ∧B)]

A6. A ⊃ (A ∨B); B ⊃ (A ∨B)

A7. (A ⊃ C) ⊃ [(B ⊃ C) ⊃ [(A ∨B) ⊃ C]

A8. (A → B) ⊃ (A ⊃ B)

A9. ∼∼A ↔ A

A10. (A → B) ↔ (∼B → ∼A)

A11. ∼(A ∨B) ↔ (∼A ∧ ∼B)

A12. ∼(A ∧B) ↔ (∼A ∨ ∼B)

A13. A ∨ ∼A

A14. (A ∨B) ∨ (A → B)

A15. (A ∨ ∼B) ∨ (A → B)

2We remark that ⊃ (as interpreted by Pac —cf. Proposition 3.13) could have been used as a primitive
connective instead of any of the 11 conditionals given in Definition 2.7 —cf. Proposition 4.15).
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A16. [A ∧ ∼A) ∧ (B ∧ ∼B)] → (A → B)

A17. [(A → B) ∧ (A ∧ ∼A)] ⊃ ∼B

A18. [∼(A → B) ∧ (A ∧B)] → (∼A ∨ ∼B)

A19. [∼(A → B) ∧ (∼A ∧B)] → (A ∨ ∼B)

A20. (A ∧ ∼A) ⊃ ∼(A → B)

A21. (A ∧ ∼B) ⊃ ∼(A → B)

Rules of inference:

Modus ponens (MP⊃): A ⊃ B,A ⇒ B

Definitions:

A ⊃ B =df A
Pac→ B

A ↔ B =df (A → B) ∧ (B → A)

A ≡ B =df (A ⊃ B) ∧ (B ⊃ A)

Remark 4.5 (On the H-formulation of LM1). We note that if ∧ and ∨ are defined
as in  Lukasiewicz’s 3 valued logic  L3 (cf. [17]), the resulting tables are different from
the corresponding ones in MK3. On the other hand, we note that the H-formulation
of LM1 is not more complex (in fact, it is simpler) than, say, those for strong 3-valued
logics such as G3 (cf. [3] and references therein).

Below, we remark some proof-theoretical properties of LM1.
Proposition 4.6 (Some basic theorems and rules of HLM1). The following theorems
and rules are provable in HLM1:
1. Modus ponens for → (MP→): A → B,A ⇒ B
2. Adjunction (Adj): A,B ⇒ A ∧B
3. Elimination of ∧ (E∧): A ∧B ⇒ A,B
4. Deduction theorem for ⊃ (DT): If Γ, A ⊢HLM1 B, then Γ ⊢HLM1 A ⊃ B
5. If A is a classical positive propositional tautology, then ⊢HLM1 A.
6. (t1) (A → B) ≡ (∼B → ∼A); (t2) ∼∼A ≡ A; (t3) ∼(∼A → ∼B) ↔ ∼(B → A);

(t4) ∼(∼A → ∼B) ≡ ∼(B → A).

Proof. It is immediate. (1) By A8 and MP⊃. (2) By A5 and MP⊃. (3) By A4 and
MP⊃. (4) By A1 and A2 since MP⊃ is the only rule of inference. (5) By A1 through
A7 and MP⊃, as these theses and rule axiomatize classical positive propositional logic.
(6) t1-t4 are immediate by A8, A9, A10, E∧, Adj and definitions of ↔ and ≡.

By using this proposition we can prove some easy theorems of HLM1 which are
instrumental in the completeness proof.
Proposition 4.7 (More theorems of HLM1). The following theorems are provable in
HLM1. (t5) (∼A ∨ ∼B) ∨ (A → B); (t6) [∼(A → B) ∧ (∼A ∧ ∼B)] ⊃ (A ∨ B); (t7)
(B ∧∼B) ⊃ ∼(A → B); (t8) [(A → B)∧∼B] ⊃ ∼A; (t9) [(A → B)∧ (B ∧∼B)] ⊃ A.
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Proof. It is easy by using Proposition 4.6. In particular, we have: t5: by A14 and t1;
t6: by A18, A8 and t2; t7: by A20, t2 and t4; t8: by t1; t9: by A17, t1 and t2.

In what follows, we proceed to the proofs of soundness and completeness .
Theorem 4.8 (Soundness of HLM1). For any set of wffs Γ and a wff A, if Γ ⊢HLM1 A,
then (1) Γ ⊨M1 A and (2) Γ ⊨LM1 A.

Proof. (1) It is immediate: the axioms of HLM1 are M1 valid and MP⊃ preserves M1-

validity (recall that the material conditional is understood according to the table
Pac→ :

cf. Proposition 3.13; in case a tester is needed, the one in [13] can be used). (2) By (1)
and Proposition 4.3.

Concerning completeness, it is proved by a canonical model construction, as sug-
gested above. Let us see how this proof proceeds. We begin by stating a couple of
definitions and a remark.
Definition 4.9 (HLM1-theories). An HLM1-theory is a set of wffs containing all
HLM1-theorems and closed under MP⊃. An HLM1-theory t is prime if whenever A∨
B ∈ t, then A ∈ t or B ∈ t; and t is non-trivial if it does not contain all wffs.
Remark 4.10 (Complete HLM1-theories). An HLM1-theory t is complete if for any
wff A, A ∈ t or ∼A ∈ t. Now, prime HLM1-theories are complete by virtue of A13.
Definition 4.11 (Canonical HLM1-models). Let T be a non-trivial prime HLM1-
theory. A canonical HLM1-model is the structure (K, IT ) where (i) K is defined as in
Definition 4.1 and (ii) IT is a function from the set of all wffs to K defined as follows:
For each wff A, T ∈ IT (A) iff A ∈ T and F ∈ IT (A) iff ∼A ∈ T .

Then, in order to prove completeness, we have to prove the ensuing two facts:
1. An HLM1-theory without a given wff can be extended to a prime HLM1-theory

without the same wff.
2. Let T be a non-trivial prime HLM1-theory. Then IT (as defined in Definition 4.11)

fulfills clauses (2a), (2b), (3a), (3b) (4a), (4b), (5a) and (5b) (it is immediate that
IT fulfills clause (1)). That is, we have to prove that the canonical translations
of clauses (1) through (5b) are provable in T .

We proceed to the proofs of facts 1 and 2.
Lemma 4.12 (Primeness). Let A be a wff and t an HLM1-theory such that A /∈ t.
Then there is a prime HLM1-theory T such that t ⊆ T and A /∈ T .

Proof. It is easy by using classical positive propositional logic (cf., e.g., Lemma 5.9 in
[24]). In case that ∧ and ∨ are defined by ⊃ and ∼ —which is not the case here—, it
suffices to use classical implicative propositional logic (cf., e.g., Lemma 3.9 in [18]).

Lemma 4.13 (Canonical HLM1-models are HLM1-models). Let Mc be a canonical
HLM1-model. Then Mc is indeed an HLM1-model.

Proof. Let T be a non-trivial prime HLM1-theory and Mc be the canonical HLM1-
model built upon it as indicated in Definition 4.11. In order to prove that Mc is indeed
an HLM1-model it suffices to prove that IT fulfills clauses (2a) through (5b). We have:

� Clause (2a). It is trivial.
� Clause (2b). By using A9.
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� Clause (3a). By A4 and A5.
� Clause (3b). By A12.
� Clause (4a). By primeness of T and A6.
� Clause (4b). By A11.
� Clause (5a). (⇒) Suppose A → B ∈ T . We have to show that at least one of

the following alternative obtains: [A /∈ T & B /∈ T ] or [A /∈ T & ∼B /∈ T ] or
[A ∈ T & ∼A ∈ T & B ∈ T & ∼B ∈ T ] or [∼A /∈ T & ∼B /∈ T ]. For reductio,
suppose that there are wffs A,B such that (1) A ∈ T or B ∈ T and (2) A ∈ T
or ∼B ∈ T and (3) A /∈ T or ∼A /∈ T or B /∈ T or ∼B /∈ T and (4) ∼A ∈ T or
∼B ∈ T . We have 32 possibilities to consider, but each one of them contains at
least one of the following alternatives: (a) a contradiction, e.g., A ∈ T & A /∈ T ;
(b) A ∈ T and B /∈ T ; (c) ∼B ∈ T & ∼A /∈ T ; (d) A ∈ T , ∼A ∈ T and ∼B /∈ T
or (e) B ∈ T , ∼B ∈ T and A /∈ T . But (b)-(e) are also impossible: (b): by MP→;
(c): by t8; (d): by A17; (e): by t9.

(⇐) Suppose [A /∈ T & B /∈ T ] or [A /∈ T & ∼B /∈ T ] or [A ∈ T & ∼A ∈
T & B ∈ T & ∼B ∈ T ] or [∼A /∈ T & ∼B /∈ T ]. We have to prove that A →
B ∈ T follows from each one of these four alternatives. Now, this is immediate
by using A14, A15, A16 and t5, respectively.

� Clause (5b). (⇒) Suppose ∼(A → B) ∈ T . We have to prove that at least one
of the following alternatives follows: [B ∈ T & ∼B ∈ T ] or [A ∈ T & ∼A ∈ T ]
or [A ∈ T & ∼B ∈ T ]. Suppose for reductio that there are wffs A,B such that
(1) B /∈ T or ∼B /∈ T and (2) A /∈ T or ∼A /∈ T and (3) A /∈ T or ∼B /∈ T .
We have 8 possibilities to consider, but each one of them contains at least one of
the following alternatives: (a) A /∈ T and ∼A /∈ T ; (b) B /∈ T and ∼B /∈ T ; (c)
A /∈ T and B /∈ T ; (d) A /∈ T and ∼B /∈ T or (e) ∼A /∈ T and ∼B /∈ T . But these
five situations are impossible: (a), (b): T is complete. Then, (c)-(d) are shown
untenable by using the completeness of T and t6, A19 and A18, respectively.

(⇐) Suppose [A ∈ T & ∼A ∈ T ] or [B ∈ T & ∼B ∈ T ] or [A ∈ T & ∼B ∈
T ]. We have to prove that ∼(A → B) ∈ T , follows from each one of these three
alternatives, which is immediate by using A20, t7 and A21, respectively.

Once Lemmas 4.12 and 4.13 proved, the proof of completeness is straightforward.
Theorem 4.14 (Completeness of HLM1). For any set of wffs Γ and wff A, (1) if
Γ ⊨M1 A, then Γ ⊢HLM1 A; (2) if Γ ⊨LM1 A, then Γ ⊢HLM1 A.

Proof. Firstly, case (2) is proved. (2) Suppose Γ ⊬HLM1 A, i.e., that A is not included
in the set of consequences derivable in HLM1 from Γ (in symbols, A /∈ CnΓ[HLM1]).
Then, CnΓ[HL1] is extended to a prime HLM1-theory T such that A /∈ T . Next, the
canonical HLM1-model Mc = (K, IT ) based upon T is defined, and we have Γ ⊭Mc

A,
since T ∈ IT (Γ) (as T ∈ IT (CnΓ[HLM1]) but T /∈ IT (A)), whence Γ ⊭LM1 A (by
Definitions 4.1 and 4.2), as was to be proved.

(1) It is immediate by (2) and Proposition 4.3.

The section is ended by proving that
1→, in fact,

i→ (1 ≤ i ≤ 11), can be replaced

by
Pac→ as a primitive connective.
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Proposition 4.15 (
Pac→ as a primitive connective). Let Pac be the result of expanding

MK3 with the conditional table Pac defined in Proposition 3.13. Then table 6 (so, ti
(i ≤ 1 ≤ 11) is definable from Pac.

Proof. Consider the connectives k18, k19, k20, k21, k22 and k23 defined in the follow-
ing tables:

t18
0 2
1 1
2 2

t19 0 1 2
0 2 2 2
1 0 1 2
2 0 0 2

t20 0 1 2
0 0 0 0
1 0 1 0
2 0 0 2

t21 0 1 2
0 2 1 0
1 0 1 0
2 0 0 0

t22 0 1 2
0 2 1 0
1 0 1 0
2 0 0 2

t23 0 1 2
0 0 0 2
1 0 1 0
2 0 0 0

These connectives are defined as follows:
� k18 A =df ∼(A ∧ ∼A)

� A k19 B =df (A
Pac→ B) ∧ (∼B

Pac→ ∼A)
� A k20 B =df k18 (A k19 B) k19 (A ∧B)
� A k21 B =df ∼(A ∨B) ∧ (A k19 B)
� A k22 B =df (A k20 B) ∨ (A k21 B)
� A k23 B =df k18 (A k19 B) k19 (∼A ∧B)

Then, the table
6→ is defined as follows: A

6→ B =df (A k22 B) ∨ (A k23 B). So
the 11 tables in Definition 2.7 are definable from Pac (i.e., the implicative expansion

of MK3 with table
Pac→ ).

5 Concluding remarks

The paper is ended with some brief concluding remarks on the results obtained and
on possible future work to be done on the topic.

The most known 3-valued logics such as  Lukasiewicz’s  L3, Gödel G3, the quasi-
relevant logic RM3 or the paraconsistent logic Pac (cf., e.g., [15, 21] and references in
these papers) lack the VSP. In fact, this property is not even predicable of the natural
implicative logics defined in [27]. To the best of our knowledge, [22] is the first item in
the literature presenting some instances of 3-valued logics with the VSP. These logics
are obtained by extending the notion of a “natural conditional” defined in [27].

It is trivial to build up binary expansions of MK3 with the VSP. Consider the
ensuing general table t∗ (ai (1 ≤ i ≤ 4) ∈ {0, 1, 2})

∗ 0 1 2
0 0 a1 0
1 a2 2 a3
2 0 a4 0

Suppose now that A and B do not share some propositional variables in A ∗ B.
Let M be any expansion of MK3 built up by adding any of the ∗-functions described
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in t∗ and let I be an M-interpretation such that I(p) = 2 (resp. I(p) = 0) for each
propositional variable p in A (resp., in B). Then I(A ∗ B) = 0. But it is obvious
that none of the ∗-functions of t∗ can represent a reasonable notion of a conjunction,
disjunction or implication connective. However, the 11 implicative expansions of MK3
introduced in [22] cannot be deemed artificial constructs as, we think, it has been
shown throughout the paper.

In this paper it has been proved that, from the viewpoint of functional strength,
there is only one 3-valued natural (in the sense of [22]) implication expansion with the
VSP of Kleene’s strong logic, the logic we have dubbed L3VSP. It is our opinion that
it has also been shown that L3VSP is a significant and strong logic that, we hope, can
be of some use in contexts where relevance, paraconsistency and 3-valued decidability
are needed.

There is a number of ways in which the research reported in the present paper
could be pursued. We shall limit ourselves to remark two of them, but before doing
this, let us stress the point that the fact that LM1 through LM11 are functionally
equivalent logics does not necessarily make 10 of them dismissable in favor of a given
chosen one, for the same reasons that  Lukasiewicz’s  L3 is not dismissable in favor of
one of the wealth of functional logics equivalent to it defined in [22].

The two possible paths for developing the results here obtained we propose are
these:

1. Investigate the functional relations L3VSP maintain with some significant 3-valued
logics such as those treated in [21].

2. Investigate the class of 3-valued non C-extending implication expansions of MK3
with the VSP. The members in this class will be, of course, contraclassical logics in
the sense of [14] and it is well-known that there are very interesting contraclassical
logics such as, e.g., connexive logics (cf., e.g., [28]). (We note that, as a way of
an example, a 3-valued non C-extending implication expansion of MK3 with the
VSP is briefly treated in the appendix.)
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Appendix A The system HLM10

In this appendix, we include some complementary material to the topics investigated
in the preceding sections. In particular, the ensuing points are treated: as an additional
illustration of how to provide H-formulations for the LMi-logics, LM10 is given such
a type of axiomatization; some proof-theoretical properties of LM1, LM10 and LMi-
logics in general are noted; a comparison between LM1 and the important relevant
logics B and DW is made; it is proved that all LMi-logics lack the Ackermann Property,
and finally, we briefly present an instance of a 3-valued non C-extending implication
expansion of MK3 with the VSP.
Definition A.1 (LM10-models). An LM10-model is a structure (K, I) where K and
I are defined like in LM1-models (cf. Definition 4.1), except for clauses (5a) and (5b),
which now read as follows.
(5a) T ∈ I(A → B) iff T /∈ I(A) or [T ∈ I(B) & F ∈ I(B)] or [F /∈ I(A) & T ∈ I(B)].
(5b) F ∈ (A → B) iff [T ∈ I(A) & F ∈ I(A)] or [T ∈ I(A) & F ∈ I(B)].

The notions of LM10-consequence and LM10-validity are defined similarly as in
LM1 (cf. Definition 4.2).

Then HLM10 is introduced in the next definition (∧,∨,∼ and
10→ are the primitive

connectives —cf. note 2).
Definition A.2 (The system HLM10). The system HLM10 can be formulated as
follows (A1, ..., An ⇒ B means “if A1, ..., An, then B”; the superindex “10” above →
is dropped):

Axioms:

A1. A ⊃ (B ⊃ A)

A2. [A ⊃ (B ⊃ C)] ⊃ [(A ⊃ B) ⊃ (A ⊃ C)]

A3. [(A ⊃ B) ⊃ A] ⊃ A

A4. (A ∧B) ⊃ A; (A ∧B) ⊃ B

A5. A ⊃ [B ⊃ (A ∧B)]

A6. A ⊃ (A ∨B); B ⊃ (A ∨B)

A7. (A ⊃ C) ⊃ [(B ⊃ C) ⊃ [(A ∨B) ⊃ C)]

A8. (A → B) ⊃ (A ⊃ B)

A9. ∼∼A ↔ A

A10. ∼(A ∨B) ↔ (∼A ∧ ∼B)

A11. ∼(A ∧B) ↔ (∼A ∨ ∼B)

A12. A ∨ ∼A

A13. (A → B) ∨A

A14. B ⊃ [∼A ∨ (A → B)]

A15. [(A → B) ∧ (A ∧ ∼A)] → ∼B
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A16. (B ∧ ∼B) ⊃ (A → B)

A17. (A ∧ ∼A) ⊃ ∼(A → B)

A18. (A ∧ ∼B) ⊃ ∼(A → B)

A19. [∼(A → B) ∧ ∼A] → A

A20. [∼(A → B) ∧ (A ∧B)] → (∼A ∨ ∼B)

A21. [∼(A → B) ∧ (∼A ∧B)] → (A ∨ ∼B)

Rules of inference:

Modus ponens (MP⊃): A ⊃ B,A ⇒ B

Definitions: ⊃, ≡ and ↔ are defined as in HLM1 (cf. Definition 4.4.).
Below, some proof-theoretical properties of HLM10 are remarked.

Then we note:
Remark A.3 (Some rules of HLM10). Items (1)-(5) in Proposition 4.6 for HLM1 are
also provable (in a similar way) in the case of HLM10.

Now, following the pattern developed for HLM1 in §4, it is not difficult to prove
that HLM10 is sound and complete w.r.t. both M10-semantics and LM10-semantics.
In what follows, we note some proof-theoretical properties of the LMi-logics.
Remark A.4 (Some proof-theoretical properties of the LMi-logics). Consider now
the ensuing theses and rules:

(a) A → A; (b) (A ∧ B) ↔ (B ∧ A); (c) (A ∨ B) ↔ (B ∨ A); (d) [A ∧ (B ∧ C)] ↔
[(A∧B)∧C]; (e) [A∨(B∨C)] ↔ [(A∨B)∨C]; (f) [A∧(B∨C)] ↔ [(A∧B)∨(A∧C)];
(g) [A∨ (B ∧C)] ↔ [(A∨B)∧ (A∨C)]; (h) [A∨ (A∧B)] ↔ A; (i) [A∧ (A∨B)] ↔ A;
(j) A ↔ (A ∧ A); (k) A ↔ (A ∨ A); (l) A ↔ ∼∼A; (m) ∼(A ∨ B) ↔ (∼A ∧ ∼B); (n)
∼(A∧B) ↔ (∼A∨∼B); (o) A∨∼A; (E∧) A∧B ⇒ A,B; (Adj) A,B ⇒ A∧B; (CI∧)
A → B,A → C ⇒ A → (A ∧ B); (I∨) A ⇒ A ∨ B,B ∨ A; (E∨) A → C,B → C ⇒
(A ∨ B) → C; (Trans→) A → B,B → C ⇒ A → C; (Con↔) A ↔ B ⇒ ∼B ↔ ∼A;
(Fac↔) A ↔ B ⇒ (A ∧ C) ↔ (B ∧ C); (Fac′ ↔) A ↔ B ⇒ (C ∧ A) ↔ (C ∧ B);
(Sum↔) A ↔ B ⇒ (A ∨ C) ↔ (B ∨ C); (Sum′ ↔) A ↔ B ⇒ (C ∨ A) ↔ (C ∨ B);
(Trans↔) A ↔ B,B ↔ C ⇒ A ↔ C; (Suf↔) A ↔ B ⇒ (B → C) ↔ (A → C);
(Pref↔) A ↔ B ⇒ (C → A) ↔ (C → B).

Notice that (a) is the self-identity axiom; (b) through (k) formalize the commu-
tative, associative, absorption, idempotence of ∧ and ∨ and distribution between the
two connectives. Furthermore, (l) contains the two double negation axioms, (m) and
(n) are the De Morgan laws and, finally, (o) is the principle of excluded middle. On the
other hand, the abbreviations preceding the rules summarize the following labels. E∧:
elimination of ∧; Adj: adjunction; CI∧: conditioned introduction of ∧; I∨: introduction
of ∨; E∨: elimination of ∨; Trans→: transitivity of →; Fac↔, Fac′ ↔ (resp. Sum↔,
Sum′ ↔): (two versions of) factor w.r.t. ↔ (resp., summation w.r.t. ↔); Con↔: con-
traposition w.r.t. ↔; Trans↔: transitivity w.r.t. ↔; Suf↔: suffixing w.r.t. ↔, and,
finally Pref↔: prefixing w.r.t. ↔.
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We have:
Proposition A.5 (Theses and rules provable in LM1, LM10). The theses and rules
displayed in Remark A.4 are provable in LM1 and LM10.

Proof. It is easy. It suffices to show that the theses are M1-valid and M10-valid, while
the rules preserve M1-validity and M10-validity (if needed, the tester in [13] can be
used). Then we apply the completeness theorem.

Remark A.6 (Theses and rules provable in the LMi-logics). It is easy to check that
all the theses and rules listed in Remark A.4 are provable in each one of the LMi-
logics, except for LM4 and LM5, where everything is provable save Trans (LM4 and
LM5 are non-transitive logics w.r.t. its characteristic implication).

Now, given some of the properties noted in Remark A.4, the ensuing proposition
is provable in the LMi-logics:
Proposition A.7 (Replacement). For any wffs A,B, A ↔ B ⇒ C[A] ↔ C[A/B],
where C[A] is a wff in which A appears and C[A/B] is the result of substituting A by
B in C[A] in one or more place where A occurs.

Proof. Induction on the length of C[A] by using Trans↔, Fac↔, Fac′ ↔, Sum↔,
Sum′ ↔, Pref↔, Suf↔ and Con↔.

The facts noted in Remark A.6 and Proposition A.7 allow us to compare the LMi-
logics with “implicative logics” as understood in the classical Polish logical tradition.
Definition A.8 (Implicative logics). A logic is implicative if it fulfills the ensuing
conditions for any wffs A,B,C (cf. [20, pp. 179-180]; [29, p. 228])

C1. A → A Reflexivity

C2. A → B,A ⇒ B Modus ponens

C3. A ⇒ B → A Veq

C4. A → B,B → C ⇒ A → C Transitivity

C5. A ↔ B ⇒ C[A] ↔ C[A/B] Replacement

(Veq abbreviates “Verum e quodlibet” —“A true proposition follows from any propo-
sition”.)

Now, it follows from Remark A.6 and Proposition A.7 that, leaving aside LM4
and LM5, all LMi-logics comply with all conditions listed in Definition A8, except,
of course, C3, since Veq encapsulates an infinity of paradoxes of relevance (LM4 and
LM5 fail C3 and C4).
Remark A.9 (LM1, B and DW). Routley and Meyer’s basic logic B can be
axiomatized with the ensuing axioms and rules of inference:

(a1) A → A; (a2) (A∧B) → A; (A∧B) → B; (a3) A → (A∨B); B → (A∨B); (a4)
[(A → B) ∧ (A → C)] → [A → (B ∧C)];(a5) [(A → C) ∧ (B → C)] → [(A ∨B) → C];
(a6) [A ∧ (B ∨C)] → [(A ∧B) ∨ (A ∧C)]; (a7) A → ∼∼A; (a8) ∼∼A → A; (r1 –Adj)
A,B ⇒ A ∧B; (r2 –MP) A → B,A ⇒ B; (r3 –Suf) A → B ⇒ (B → C) → (A → C);
(r4 –Pref) B → C ⇒ (A → B) → (A → C); (r5 –Con) A → B ⇒ ∼B → ∼A.
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Then, the logic DW is the result of replacing in B the rule Con by the contraposition
axiom (A → B) → (∼B → ∼A) (cf. [26, Chapter 4] about B and DW). Now, let B′

(resp., DW′) be the result of replacing in B (resp., in DW) the axioms a2 and a3 by
the respective corresponding rule E∧ and I∨ (cf. Remark A.4). Well then, we note
that LM1 is an expansion of DW′.
Remark A.10 (Ackermann Property). A logic L has the Ackerman Property (AP) if
A contains at least an implicative connective in all L-theorems of the form A → (B →
C). As pointed out above, the VSP is, according to Anderson and Belnap, a necessary
property of any relevant logic, but, in addition to the VSP, a logic L has to comply
with the AP in order to be an entailment logic (cf. [1]). LM1-LM11 lack the AP: the
wff p → (p → p) (an instance of the “mingle axiom” A → (A → A)) is provable in
each one of them.
Remark A.11 (A 3-valued non C-extending implication expansion of MK3 with
the VSP). Consider the non C-extending implication expansion of MK3 with the
f→-function given by the ensuing table

→ 0 1 2
0 2 2 0
1 0 1 0
2 0 1 2

Let us name LM12 the logic determined by this expansion. We note that LM12
has the VSP: if A and B do not share propositional variables in A → B, then I(A →
B) = 0 for any M12-interpretation I such that I(p) = 1 (resp., I(p) = 0) for each
variable p in A (resp., in B). Finally, Pac (so classical positive propositional logic —cf.

Proposition 3.13) is definable as follows: A
Pac→ B =df B ∨ (A

12→ B). Then, keeping to
the pattern set up for axiomatizing LM1 and LM10, LM12 can be given the ensuing
H-formulation as an expansion of classical positive propositional logic (cf. note 2):

Axioms: A1-A12 of HLM10 plus (A13) (B ∧ ∼B) ⊃ (A → B); (A14) (A ∧ ∼A) ⊃
∼(A → B); (A15) (A ∧ B) ⊃ [∼A ∨ (A → B)]; (A16) (∼A ∧ ∼B) ⊃ [A ∨ (A → B)];
(A17) (A ∧ ∼B) ⊃ [∼A ∨ ∼(A → B)]; (A18) (∼A ∧ B) ⊃ [∼B ∨ ∼(A → B)]; (A19)
(A → B) ⊃ (∼A∨B); (A20) (A → B) ⊃ (A∨∼B); (A21) [(A → B)∧∼A] ⊃ ∼B; (A22)
∼(A → B) ⊃ (A∨B); (A23) [∼(A → B)∧∼B] ⊃ A; (A24) ∼(A → B) ⊃ (∼A∨∼B).

The only rule of inference is modus ponens for ⊃. Notice that A18, A20 and A21
are contraclassical theses (cf. [14]).
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