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Abstract

Sylvan and Plumwood’s BM is the relevant De Morgan minimal logic in

the Routley-Meyer semantics with a set of designated points. The aim of

this paper is to define the logic BKM and some of its extensions. The logic

BKM is the non-relevant De Morgan minimal logic in the Routley-Meyer

semantics without a set of designated points.
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1 Introduction

The Routley-Meyer ternary relational semantics (henceforth, RM-semantics)

was introduced in the early seventies of the past century. The RM-semantics

was defined for interpreting relevant logics, but it was soon noticed that an

ample class of non-relevant ones could also be characterized by this semantics

(cf. [7], [8], [9] and [10]; cf. also the introduction and the “Postcript to the

appendices” in [11]). The most comprehensive reference on the RM-semantics

is still [11] and especially its excellent Chapter 4. In this work, Routley and

Meyer’s basic logic B (cf. Remark 2.4) is the minimal logic endowed with an

RM-semantics. Then, in Chapter 4, in a simple and general way, it is shown

how to extend the RM-semantics for B in order to model a wealth of extensions,

relevant and non-relevant, of this logic. However, the logic B is not the minimal

logic in the RM-semantics: there are weaker logics that can be given an RM-

semantics. Actually, as it was shown in [12] (included in the volume edited by

Brady [2]), Sylvan and Plumwood’s logic BM is the minimal logic that can be

endowed with an RM-semantics (cf. Remark 2.4 on the definition of B and BM).

According to its creators, the RM-semantics is a “world-semantics” (cf. the

introduction to [11]). In addition to the ternary accessibility relation and the

treatment of negation with the Routley operator, a distinctive characteristic of

this semantics (shared by some Kripke models) is the presence of a subset, ,
of the set of all worlds (points, “set-ups” or whatever other name the reader

prefers), , w.r.t. which validity of wffs is decided. Of course, the idea is to
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allow the failure of theorems in some worlds so as to falsify such “paradoxes”

as  → ( → ). BM is then the relevant De Morgan minimal logic in the

semantics with a set of designated points. Now, the main aim of this paper is

to define the minimal logic in the RM-semantics when the set  is dropped and

validity of wffs is determined w.r.t. the set of all points . This logic, named
BKM is, so to speak, the non-relevant counterpart to Sylvan and Plumwood’s

BM (cf. Definition 2.2 on the formulation of BKM and its label). Then, BKM is

the non-relevant De Morgan minimal logic in the RM-semantics without a set

of designated points.

A second aim of the paper is to include a preliminary study on the extensions

of BKM: mirroring Chapter 4 in [11], we show how to define an RM-semantics

for a wide class of (non-relevant) logics extending BKM.

In previous works, we have used the RM-semantics for modelling logics which

are very distant from the spectrum of standard relevant logics. Thus, for ex-

ample, RM-semantics has been given for Łukasiewicz’s 3-valued logic Ł3, Gödel

3-valued logic G3 or “Involutive Monoïdal t-norm based logic IMTL” (cf. [3],

[4] and [6]). Even logics not included in classical propositional logic have been

accommodated in the RM-semantics (cf. the excellent [1]). A consequence of

these results is the exhibition of unexpected connections between seemingly un-

related logics. In this sense, the purpose of the present paper is a practical one:

we aim to make available a way of defining an RM-semantics for a wide family

of non-relevant logics provided they contain BKM.

The structure of the paper is as follows. In Section 2, the logic BKM is

defined; and in Section 3, an RM-semantics is provided and the soundness theo-

rem is proved. In Section 4, we set the ground for the completeness theorem by

proving some preliminary facts; and in Section 5, the canonical model is defined

and then the completeness theorem is proved. In Section 6, we record the class

of extensions of BKM referred to above. Finally, in Section 7, we draw some

conclusions from the results obtained and suggest some directions for further

work in the same direction. A long proof of independence in BKM has been

postponed in an Appendix.

2 The logic BKM

In this section, we define the logic BKM. We begin by specifying the logical

language and the notion of logic used in this paper.

Definition 2.1 (Languages, logics) The propositional language consists of a

denumerable set of propositional variables 0 1    and some or all of the
following connectives → (conditional), ∧ (conjunction), ∨ (disjunction), and
¬ (negation). The biconditional (↔) and the set of wffs are defined in the
customary way. , etc., are metalinguistic variables. From the proof-

theoretical point of view, we shall consider propositional logics formulated in the

Hilbert-style way, that is, logics axiomatized by means of a finite set of axioms

(actually, axiom schemes) and a finite set of rules of derivation. The notions of
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‘proof’ and ‘theorem’ are understood as it is customary in Hilbert-style axiomatic

systems. By `S , it is indicated that  is a theorem of S.

The logic BKM is defined as follows.

Definition 2.2 (The logic BKM) The logic BKM is axiomatized with the fol-

lowing axioms and rules of inference.

Axioms:

A1. → 

A2. ( ∧)→  / ( ∧)→ 

A3. [(→ ) ∧ (→ )]→ [→ ( ∧ )]
A4. → ( ∨) /  → ( ∨)
A5. [(→ ) ∧ ( → )]→ [( ∨)→ ]

A6. [ ∧ ( ∨)]→ [( ∧) ∨ ( ∧ )]
A7. (¬ ∧ ¬)→ ¬( ∨)
A8. ¬( ∧)→ (¬ ∨ ¬)

Rules:

Modus ponens (MP).  & →  ⇒ 

Adjunction (Adj).  &  ⇒  ∧
Suffixing (Suf). →  ⇒ ( → )→ (→ )

Prefixing (Pref).  →  ⇒ (→ )→ (→ )

“Verum e quodlibet” (Veq). ⇒  → 

Contraposition (Con). →  ⇒ ¬ → ¬
E falso quodlibet (Efq). ⇒ ¬→ 

Double negation (Dn). ⇒ ¬¬
“Verum e quodlibet” means “A true proposition follows from any proposi-

tion”; “E falso quodlibet” means “Any proposition follows from a false proposi-

tion”. The rule Veq is also labelled “rule K”, whence the logic BKM takes one

of the subscripts in its name.

We record some theorems of BKM and prove that BKM is well-axiomatized

w.r.t. Routley and Meyer’s basic positive logic B+.

Some theorems of BKM are the following (a proof is sketched to the right of

each one of them):

T1. ¬( ∨)↔ (¬ ∧ ¬) A3, A4, Con; A7

T2. ¬( ∧)↔ (¬ ∨ ¬) A2, A5, Con; A8

T3. ¬¬(→ ) A1, Dn

Notice that T1 and T2 are the De Morgan laws. In addition to T1-T3 we

have the rule “Disjunction Syllogism” (DS):

DS.  & ¬ ∨ ⇒  A1, Efq, A5
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Proposition 2.3 (On the axiomatization of BKM) The logic BKM is well

axiomatized w.r.t. B+. That is, given the logic B+, A7, A8, Veq, Con, Efq and

Dn are independent from each other.

Proof. See the appendix. (The logic B+ is axiomatized by A1-A6, MP, Adj,

Suf and Pref; cf. [8] or [11].)

The following remark may be useful for comparison purposes.

Remark 2.4 (The logic BM; the logic B) Sylvan and Plumwood’s logic BM
is axiomatized when dropping Veq, Efq and Dn from the formulation of BKM in

Definition 2.2 (cf. [12]). Routley and Meyer’s basic logic B is the result of

adding the double negation axioms (→ ¬¬ and ¬¬→ ) to BM (cf. [11]).

(We note that A7 and A8 are then not independent.)

3 Semantics for BKM

In the first place, models and validity are defined.

Definition 3.1 (BKM-models) A BKM-model is a structure ( ∗²) where
 is a set,  is a ternary relation on  and ∗ is a unary operation on  subject

to the following definitions and postulates for all    ∈ :

d1.  ≤  = (∃ ∈ )

P1.  ≤ 

P2. ( ≤  & )⇒ 

P3.  ≤ ⇒ ∗ ≤ ∗

Finally, ² is a relation from  to the set of all wffs such that the following

conditions (clauses) are satisfied for every propositional variable , wffs , 
and  ∈ :

(i). ( ≤  &  ² )⇒  ² 

(ii).  ²  ∧ iff  ²  and  ² 

(iii).  ²  ∨ iff  ²  or  ² 

(iv).  ² →  iff for all   ∈ , ( and  ² )⇒  ² 

(v).  ² ¬ iff ∗ 2 

Definition 3.2 (Truth in a BKM-model) A wff  is true in a BKM -model

iff  ²  for all  ∈  in this model.

Definition 3.3 (BKM-validity) A formula  is BKM -valid (in symbols, ²BKM
) iff  ²  for all  ∈  in all BKM -models.

We note a remark on BKM-models.
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Remark 3.4 (BKM-models and relevant models) The only but crucial dif-

ference between BKM -models and relevant models in general and BM -models in

particular (i.e., models for Sylvan and Plumwood’s minimal logic BM ; cf. Re-

mark 2.4) is the following. In the latter, a distinguished subset of , , is
included. It is w.r.t. this set that the relation ≤ and, most of all, validity are
defined as follows:  ≤  = (∃ ∈ );  is valid iff  ²  for all  ∈ 
in all models. Actually, BKM -models and BM-models are indistinguishable from

each other save for the point just remarked (cf. [12]).

In the sequel, we proceed to the proof of the soundness theorem. The fol-

lowing two lemmas are useful.

Lemma 3.5 (Hereditary condition) For any BKM -model,   ∈  and wff

, ( ≤  &  ² )⇒  ² .

Proof. Induction on the length of . The conditional case is proved with P2
and the negation case with P3.

Lemma 3.6 (Entailment lemma) For any wffs , , ²BKM →  iff ( ²
⇒  ² , for all  ∈  in all BKM -models).

Proof. From left to right: by P1; from right to left: by Lemma 3.5.

We can now prove soundness.

Theorem 3.7 (Soundness of BKM) For each wff , if `KM
, then ²BKM

.

Proof. Axioms A1-A8 and the rules MP, Adj, Suf, Pref and Con are proved as

in BM-models or in B-models (cf. [12] and [11]). Then, it remains to prove that

the rules Veq, Efq and Dn preserve BKM-validity.

(a) Veq.  ⇒  → : Suppose ²BKM . Then,  ²  ⇒  ²  for any

 ∈  in any BKM-model and wff  (cf. Definition 3.3). Thus, ²BKM  → ,
by Lemma 3.6.

(b) Efq.  ⇒ ¬ → : Suppose ²BKM  but 2BKM ¬ → . Then, there
is  ∈  in some BKM-model such that  ² ¬ and  2  (Lemma 3.6). By

clause (v), ∗ 2 , contradicting the BM-validity of  (Definition 3.3).

(c) Dn.  ⇒ ¬¬: Suppose Suppose ²BKM  but 2BKM ¬¬ for some

 ∈  in some BKM-model. By applying (twice) clause (v), we have 
∗∗ 2 .

contradicting the BKM-validity of .

We note a remark to end the section.

Remark 3.8 (No additional postulates needed) It is remarkable that no

additional postulates to P1-P3 have been necessary to prove that Veq, Efq and

Dn preserve validity. Also, notice that the involutive postulates  ≤ ∗∗ and
∗∗ ≤  in particular have not been necessary.
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4 Completeness of BKM I. Classes of theories.

Primeness. ∗-images of prime theories
In this section, we prove some facts about different classes of theories built upon

BKM. These results are used in the completeness proofs of the next section. We

begin by defining the notion of a theory and the classes of theories we are

interested in in this paper.

Definition 4.1 (Theories. Classes of theories) A theory is a set of formu-

las closed under Adjunction (Adj) and BKM -implication (BKM -imp). That is, 
is a theory if whenever  ∈ , then  ∧  ∈ ; and if whenever  →  is

a theorem of BKM and  ∈ , then  ∈ . Let now  be a theory. We set (1)
 is prime iff whenever  ∨  ∈ , then  ∈  or  ∈ ; (2)  is empty iff no
wff belongs to it; (3)  is trivial iff it contains every wff; (4)  is regular iff all
theorems of BKM belong to it; finally, (5)  is w-inconsistent (inconsistent in a
weak sense) iff for some theorem  of BKM , ¬ ∈ . Then,  is w-consistent
(consistent in a weak sense) if  is not w-inconsistent.

Firstly, we remark the relationship between regularity and non-emptiness

and that between weak consistency and non-triviality.

Proposition 4.2 (Regularity and non-emptiness) A theory is regular iff

it is non-empty.

Proof. It is immediate by the rule Veq.

Proposition 4.3 (Weak consistency and non-triviality) A theory is weakly

consistent iff it is non-trivial.

Proof. It is immediate by the rule Efq.

Then, notice the following corollary of Propositions 4.2 and 4.3.

Corollary 4.4 (On regularity and w-consistency) A theory is regular and

w-consistent iff it is non-empty and non-trivial.

Proof. Immediate by propositions 4.2 and 4.3.

Next, we record the primeness lemma.

Lemma 4.5 (Extensions to prime theories) Let  be a theory and  a wff
such that  ∈ . Then, there is a prime theory  such that  ⊆  and  ∈ .

Proof. Cf. [11] (Chap. 4) where it is shown how to proceed in an ample class

of logics including Routley and Meyer’s basic positive logic B+ (cf. Proposition

2.3 on the axiomatization of B+).

In what follows, we investigate the ∗-images of prime theories.
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Definition 4.6 (∗-images of prime theories) Let  be a prime theory. The
set ∗ (the ∗-image of ) is defined as follows: ∗ = { | ¬ ∈ }.
Lemmas 4.7 and 4.8 below essentially show that the ∗-image of a non-trivial,

non-empty and prime theory is a theory with the same properties.

Lemma 4.7 (Primeness of ∗-images) Let  be a prime theory. Then, ∗ is
a prime theory as well.

Proof. Let  be a prime theory. (1) ∗ is closed under BKM-imp by Con; (2)
∗ is closed under Adj by A8; (3) ∗ is prime by A7. (Cf. [11], Chap 4.)

Lemma 4.8 (Non-emptiness and non-triviality of ∗-images) Let  be a
prime theory. Then, (1)  is non-empty iff ∗ is non-trivial; (2)  is non-trivial
iff ∗ is non-empty.

Proof. Let  be a prime theory. (1a) Suppose that  is non-empty and, for
reductio, that ∗ is trivial. Then ¬( → ) ∈ ∗. So, ¬¬( → ) ∈ 
(Definition 4.6), contradicting the non-emptiness of  (Proposition 4.2 and T3).
(1b) Suppose that ∗ is non-trivial and, for reductio, that  is empty. Then,
¬¬( → ) ∈ , and so, ¬( → ) ∈ ∗ (Definition 4.6), contradicting the
non-triviality of  (Proposition 4.3 and A1). Case (2) is proved in a similar way
by using A1 (→ ) and its negation ¬(→ ).

5 Completeness of BKM II. The canonical model.

The completeness theorem

Firstly, the canonical model is defined.

Definition 5.1 (The canonical BKM-model) Let 
 be the set of all the-

ories and  be defined on  as follows: for all    ∈  and wffs ,
 iff ( →  ∈  &  ∈ ) ⇒  ∈ . Now, let  be the set of all

non-trivial, non-empty prime theories. On the other hand, let  be the re-

striction of  to  and ∗ be defined on  as follows: for each  ∈  ,

∗ = { | ¬ ∈ } (cf. Definition 4.6). Finally, ²is defined as follows: for
any  ∈  and wff ,  ²  iff  ∈ . Then, the canonical model is the
structure (    ∗ ²).
We shall prove that every non-theorem of BKM is false in the BKM-canonical

model. But in order to prove that the BKM-canonical model is in fact a BKM-

model, we need to prove some preliminary facts.

Lemma 5.2 ( and non-emptiness) Let   be non-empty theories and 
a theory such that . Then,  is non-empty as well.

Proof. Let  ∈ ; by A1 and Proposition 4.2,  →  ∈ . So,  ∈  (
and Definition 5.1).
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Lemma 5.3 ( and non-triviality) Let   be non-empty theories and  be
a non-trivial theory such that . Then,  and  are non-trivial as well.

Proof. (1) Suppose that  is trivial and let  ∈ . Then,  → ¬(→ ) ∈ .
So, ¬( → ) ∈  contradicting the non-triviality of  (Proposition 4.3). (2)
Suppose now that  is trivial. Then, ¬(→ ) ∈  But ¬( → )→ ¬(→
) ∈  (Proposition 4.2). So, ¬( → ) ∈ , contradicting again the non-
triviality of .

Lemma 5.4 (Defining  for   in  ) Let ,  non-empty theories. The
set  = { | ∃[ →  ∈  &  ∈ ]} is a non-empty theory such that
.

Proof. It is easy to prove that  is a theory. Then,  is immediate by
definition of  (Definition 5.1). Finally,  is non-empty by Lemma 5.2.

We note the following remark about the lemmas just proved.

Remark 5.5 (On  and non-triviality) Let ,  be non-empty and non-
trivial theories and  a theory such that . Notice that although  is non-
empty (Lemma 5.2), it is not necessarily non-trivial.

A second important primeness lemma (cf. Lemma 4.5) is the following.

Lemma 5.6 (Extending ,  in  to members in ) Let ,  be non-
empty theories and  be a non-trivial, non-empty prime theory such that .
Then, there are non trivial (and non-empty) prime theories  and  such that
 ⊆  and  ⊆ ,  and .

Proof. Given the hypothesis of Lemma 5.6, we build up non-empty prime

theories  and  such that  and  (cf. [11], Chap 4). By Lemma 5.3
 and  are in addition non-trivial.

Lemma 5.7 shows that the relation ≤ is just set inclusion between non-trivial
and non-empty prime theories, from the canonical point of view.

Lemma 5.7 (≤ and ⊆ are coextensive) For any ,  ∈  ,  ≤  iff
 ⊆ .

Proof. From left to right, it is immediate. So, suppose  ⊆  for non-trivial
and non-empty prime theories  and . Clearly, KM (cf. Definition 4.1
and Definition 5.1). Then, by using Lemma 5.6, there is some non-trivial and

non-empty prime theory  such that BKM ⊆  and . By the hypothesis
, i.e.,  ≤ .

Next, we prove that ∗ is an operation on  . Then, we can prove that the

canonical model is indeed a model and finally, the completeness theorem.

Lemma 5.8 (∗ is an operation on ) Let  be a non-trivial and non-
empty prime theory. Then, ∗ is a non-trivial and a non-empty prime theory
as well.
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Proof. Let  be a non-trivial and non-empty prime theory. By Lemma 4.7, ∗

is prime; by Lemma 4.8, ∗ is non-trivial and non-empty.

Lemma 5.9 (The canonical model is in fact a model) The canonical model

is in fact a BKM -model.

Proof.  is clearly a ternary relation on  and ∗ is an operation on 

(Lemma 5.8). So, it remains to prove the facts (1)-(3) listed below.

1. The set  is non-empty. It is immediate by Lemma 4.5, since BKM is,

of course, a regular and non-trivial theory.

2. Postulates P1-P3 hold in the canonical model. It is immediate by using

Lemma 5.7.

3. Clauses (i)-(v) in Definition 3.1 are satisfied by the canonical BKM-model.

Clause (i) is immediate by Lemma 5.7. Clauses (ii), (iii), (v) and (iv) from

left to right are easy (they are proved as, e.g., in the semantics for B; cf.

[11]). So, let us prove clause (iv) from right to left.

For wffs ,  and  ∈  , suppose  →  ∈  (i.e.,  2  → ). We
prove that there are ,  ∈  such that ,  ∈  (i.e.,  ² )
and  ∈  (i.e.,  2 ).

Consider the sets  = { |`BKM → } and  = { | ∃[→  ∈  &
 ∈ ]}. They are theories such that . Now,  ∈  (by A1) and
 ∈  (if  ∈ , then →  ∈ , contradicting the hypothesis). So,  is
non-empty (Lemma 5.2) and  is non-trivial (Lemma 5.3). Consequently,
we have non-trivial, non-empty theories ,  such that ,  ∈  and
 ∈ . Now, by Lemma 4.5, there is some  ∈  such that  ⊆  and
 ∈ . Obviously, . Next, by Lemma 5.6, there is some  ∈ 

such that  ⊆  and . Clearly,  ∈ . Therefore, we have non-
trivial and non-empty prime theories ,  such that  ∈  (i.e.,  ² ),
 ∈  (i.e.,  2 ) and , as was to be proved.

Finally, we prove the completeness theorem.

Theorem 5.10 (Completeness of BM) For each wff , if ²BKM , then
`BKM .

Proof. Suppose 0BKM . By Lemma 4.5, there is a non-trivial, non-empty
prime theory  such that BKM ⊆  and  ∈ . By Definition 5.1 and Lemma
5.9,  2 . Therefore, 2BKM  by Definition 3.3.
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6 Extensions of BKM

In this section, we provide an RM-semantics for some extensions of BKM. Con-

sider the following theses:

t1. [(→ ) ∧ ( → )]→ (→ )

t2. (→ )→ [( → )→ (→ )]

t3. ( → )→ [(→ )→ (→ )]

t4. [→ (→ )]→ (→ )

t5. [(→ )→ ]→ 

t6. → [(→ )→ ]

t7. → ( → )

t8. (→ ) ∨ ( → )

t9.  ∨ (→ )

t10. → ¬¬
t11. ¬¬→ 

t12. (→ )→ (¬ → ¬)
t13. ¬( ∧ ¬)
t14.  ∨ ¬
t15. ( ∧ ¬)→ 

t16. (→ )→ (¬ ∨)
t17. ¬→ (→ )

t18. ( ∨ ¬) ∨ (→ )

t19. ¬ ∨ ( → )

Let now S be a extension of BKM axiomatized by any selection of t1-19. The

aim of this section is to define an RM-semantics for S. The fundamental concept

is “corresponding postulate (c.p.) to a thesis (or rule)”, which can be rendered

as follows (cf. [11], p. 301). Let t be one of the theses t1-t19 and let p be
a semantical postulate. Then, given the logic BKM and BKM-models, p is the
c.p. to t iff (i) t is true in any BKM-model in which p holds; and (ii) p holds
in the canonical BKM-model if t is added as an axiom to BKM. It must be clear
that if, given the logic BKM and BKM-semantics, p is the c.p. to t, then the
logic BKM+t (i.e., BKM plus t) is sound and complete w.r.t. BKM+p-models
(i.e., BKM-models in which p holds).
Given a BKM-model M, consider now the following definition and semantical
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postulates for all , , ,  ∈  with quantifiers ranging over .

d2. 2 = ∃( & )

pt1. ⇒ ∃( & )

pt2. 2⇒ ∃( & )

pt3. 2⇒ ∃( & )

pt4. 

pt5. ∃
pt6. ⇒ 

pt7. ⇒  ≤ 

pt8. ( & )⇒ ( ≤  or  ≤ )

pt9. ⇒  ≤ 

pt10.  ≤ ∗∗

pt11. ∗∗ ≤ 

pt12. ⇒ ∗∗

pt13. ∗ ≤ ∗∗

pt14. ∗ ≤ 

pt15.  ≤ ∗

pt16. ∗
pt17. ⇒  ≤ ∗

pt18. ⇒ ∗ ≤  or  ≤ 

pt19. ⇒ ∗ ≤ 

We have the following proposition.

Proposition 6.1 (Corrresponding postulates to t1-t19) Given the logic

BKM and BKM -models, p is the corresponding postulate (c.p.) to t (1 ≤  ≤
19).

Proof. It is similar to the proof provided in [11] for extensions of Routley and

Meyer’s basic logic B. There is, however, an important difference: when proving

that p holds canonically, it has to be shown that each new theory introduced
is non-trivial and non-empty. But this is easily accomplished by using lemmas

5.2, 5.3, 5.4 and 5.6. Let us illustrate the point with an example.

pt2 is the corresponding postulate to t2 : The proof that t2 is true in any

BKM-model in which pt2 holds is left to the reader (cf. e.g., [8]). We then prove

that pt2 holds canonically. Suppose , , ,  ∈  and 2. Consider the
set  = { | ∃[ →  ∈  &  ∈ ]}. By Lemma 5.4,  is a non-empty
theory such that ; and by using t2, it is easy to show that  . Next, 
is non-trivial by Lemma 5.3. Finally, by applying Lemma 5.6,  is extended to a
non-trivial, non-empty prime theory  such that  ⊆  and . Obviously,
. Thus, we have some  ∈  such that  and  as required.

11



Remark 6.2 (On the postulates pt4 and pt5) Notice that pt4 and pt5 are

not the c.p. to t4 and t5 in relevant logics. In fact, pt40 ⇒ 2 is the
c.p. to t4 while pt5 is the c.p. to the Assertion rule  ⇒ ( → ) → 
in standard relevant logics. On the other hand, there does not seem to be a

corresponding postulate to t5 in relevant logics (cf. [11], pp. 300-301, and [8]).

7 Conclusion

The main aim of this paper has been to define the non-relevant De Morgan

minimal logic in the Routley-Meyer semantics with no designated points. But

a second aim is of practical value. There is a wealth of logics definable by

adding different selections of t1-t19 to BKM. And each one of these logics has

an RM-semantics as it has been shown above. Some of the definable logics are

well-known ones. For example, BKM plus t4, t6, t12 and t17 is a formulation of

propositional intuitionistic logic J (cf. [5]); and J plus t9 is propositional classical

logic. Or, to take a last example, Gödel 3-valued logic G3 is axiomatized by

adding t18 to J (cf. [3]). But most definable logics have not been described

in the literature, as far as we know. Consider, for example, the basic logics

BK, GK, DKK and DLK axiomatized as follows. BK: BKM plus t10 and t11;

GK: BK plus t14; DKK: GK plus t1 and t12; DLK: DK plus t16. These logics

are the non-relevant counterparts to the basic relevant logics B, G, DK and

DL formulated by dropping the rule Veq (or K) from BK, GK, DKK and DLK,

respectively (cf. [11], p. 289). Or, to take some stronger logics, consider, for

instance, the system BKM plus t2, t6, t7, t8, t10, t11 and t12 which, as any of

its subsystems, is a sublogic of Łukasiewicz’s 3-valued logic Ł3. As remarked

above, we immediately have an RM-semantics for each one of the examples just

selected, or indeed for the ones the reader might wish to select herself.

As it was pointed out in the introduction to this paper, in previous works, we

have shown how to define RM-semantics for logics well far off the spectrum of

relevant logics. These results do not lack interest since they show that families

of logics at first sight very different from each other are related in some sense.

Therefore, we hope that the results in the present paper can be of some use

for (1) extending the above list of semantical postulates by defining new ones

together with their corresponding theses (we note that the reader can find a list

of semantical postulates, some of which have not been considered here, in [11],

pp. 300-301. On the other hand, pt8, pt13, pt17, pt18 and pt19 are not listed in

[11]); (2) defining logics of interest and providing them with an RM-semantics;

and (3) providing an RM-semantics for logics interpreted with other kind of

semantics or with no semantics at all.

A Appendix. Independence in BKM

The following matrices show that A7, A8, Veq, Con, Efq and Dn are independent

of each other, given the logic B+ (cf. Proposition 2.3):
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Matrix I. Independence of A7.

→ 0 1 2 3 ¬
0 3 3 3 3 3
1 0 3 0 3 3
2 0 0 3 3 1
*3 0 0 0 3 0

∧ 0 1 2 3
0 0 0 0 0
1 0 1 0 1
2 0 0 2 2
*3 0 1 2 3

∨ 0 1 2 3
0 0 1 2 3
1 1 1 3 3
2 2 3 2 3
*3 3 3 3 3

Falsifies A7 ( = 2,  = 1).

Matrix II. Independence of A8.

The tables for→, ∧, ∨ are as in Matrix I, but the negation table is as follows:
0 1 2 3

¬ 3 0 0 0

Falsifies A8 ( = 2,  = 1).

Matrix III. Independence of Veq.

→ 0 1 2 ¬
0 2 2 2 2
*1 0 1 2 0
*2 0 0 2 0

∧ 0 1 2
0 0 0 0
*1 0 1 1
*2 0 1 2

∨ 0 1 2
0 0 1 2
*1 1 1 2
*2 2 2 2

Falsifies Veq ( = 1,  = 2).

Matrix IV. Independence of Con.

→ 0 1 2 ¬
0 2 2 2 2
1 2 2 2 1
*2 0 1 2 0

∧ 0 1 2
0 0 0 0
1 0 1 1
*2 0 1 2

∨ 0 1 2
0 0 1 2
1 1 1 2
*2 2 2 2

Falsifies Con ( = 1,  = 0).

Matrix V. Independence of Efq.

→ 0 1 ¬
0 1 1 1
*1 0 1 1

∧ 0 1
0 0 0
*1 0 1

∨ 0 1
0 0 1
*1 1 1

Falsifies Efq ( = 1,  = 0).

Matrix VI. Independence of Dn.

The tables for →, ∧, ∨ are as in Matrix V (the classical truth tables), but
the negation table is as follows:

0 1
¬ 0 0

Falsifies Dn ( = 1).
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Notice that the rule Veq is not even admissible in the class of logics verified

by Matrix III. And a corresponding fact holds for Matrix IV and Con, Matrix

V and Efq and Matrix VI and Dn.
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