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Abstract

Equivalent overdetermined and underdetermined bivalent Belnap-Dunn

type semantics for the logics determined by all natural implicative expan-

sions of Kleene’s strong 3-valued matrix with only one designated value

are provided.
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1 Introduction

The aim of this paper is to provide equivalent overdetermined and underde-

termined bivalent Belnap-Dunn type semantics for the logics determined by all

natural implicative expansions of Kleene’s strong 3-valued matrix with only one

designated value. Let us explain with detail this aim. We begin by briefly

discussing the notions “Belnap-Dunn semantics”, “natural conditionals” and

“Kleene’s strong 3-valued matrix” (we refer to some of the preliminary defini-

tions in §2 or in other sections below).

Belnap-Dunn semantics (BD-semantics) originates with Belnap and Dunn’s

well-known logic B4 introduced to treat inconsistent and incomplete situations

(cf. [5], [6], [7] and [8]). BD-semantics is characterized by the possibility of

assigning T (truth), F (falsity), both T and F or neither T nor F to the formulas

of a given formal language, or, indeed, to the propositions of a language in

general. Conjunction, disjunction and negation are the only connectives in

B4, but Belnap and Dunn’s approach has been generalized to the notion of a

bilattice, which was found important applications in artificial intelligence (cf.,

e.g., [2] and [3]). There are two special types of BD-semantics, underdetermined
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BD-semantics (u-semantics) and overdetermined BD-semantics (o-semantics).

Formulas can be assigned T, F or neither T nor F in the former; T, F or both

T and F, in the latter. U-semantics is a “partial” semantics and o-semantics is

its dual. We refer the reader to Dunn’s classical paper [8] for more information

on the topic.

On the other hand, given a matrix semantics, a conditional is “natural”

if it fulfills the following three conditions: (1) it coincides with the classical

conditional when restricted to the classical values T and F; (2) it satisfies the

Modus Ponens ; and (3) it is assigned a designated value whenever the value

assigned to its antecedent is less than or equal to the value assigned to its

consequent. The notion of a “natural conditional” is understood as defined in

[24] (cf. Definition 2.7), but it has to be remarked that stricter notions can be

found in the literature (cf., e.g., [4]).

In the third place, Kleene’s strong 3-valued matrix MK3 (our label) was

defined in [10] in the context of the treatment of partial recursive functions.

The matrix MK3 can be defined as shown in Definition 2.6. We can take either

2 as the only designated value or else both 1 and 2. In the former case 1 can be

interpreted as neither truth nor falsity; in the latter, as both truth and falsity.

The value 2 is, of course, truth, while 0 is falsity.

There are exactly 24 natural implicative expansions of MK3 with 1 and 2

as designated values, and 6 with 2 as the only designated value. By using

a BD-semantics we have axiomatized in a general and unified way the logics

determined (cf. Definition 7.4) by these 30 natural implicative expansions of

MK3. As it was to be expected, an o-semantics is used for the logics determined

by the 24 expansions of MK3 with two designated values (cf. [17]) and a u-

semantics for the logics determined for the 6 expansions of MK3 with only 2 as

designated value (cf. [19]). It is obvious that it does not make sense to try and

define a u-semantics for the former logics, but we will show that the latter can

equivalently be interpreted with a u-semantics and an o-semantics.

Concerning these semantics, there is another question that has to be re-

marked. Given a matrix M, as it is known, there are essentially two different

ways of defining a consequence relation in M: a truth-preserving relation or a

degree of truth-preserving relation (cf. Definition 7.1). In this sense, the -

valued Łukasiewicz logic Ł ( = 3  ) is generally understood as the logic
determined by the truth-preserving consequence relation defined in the matrix

MŁ (cf. Definition 7.1). But Wójcicki has remarked that Ł can also be viewed

as the logic determined by the degree of truth-preserving consequence relation

(cf. [26], §13). Actually, he goes as far as to affirm: “If not supplemented with

a suitable epithet, Łukasiewicz logic is an ambiguous term” ([26], p. 42). Let us

refer by Ł1 and L≤ to the former and the latter logic, respectively. Although
both logics share, of course, the same set of valid formulas, they are fairly dif-

ferent, Ł≤ being included in Ł1 (cf. Definition 2.3) but not conversely. Well

then, in our papers [17] and [19] referred to above, we have only considered

truth-preserving consequence relations and their corresponding relations in BD-

semantics (o-relations in [17] and u-relations in [19]). In the present paper,

however, it will be shown that it is possible to define degree of truth-preserving
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consequence relations in 4 of the 6 natural implicative expansions of MK3 with

only one designated value. Then, the corresponding equivalent o-relations and

u-relations will also be defined and the required strong soundness and complete-

ness theorems will be proved. In this way, we define paraconsistent versions of

four of the logics defined in [19] w.r.t. a truth-preserving consequence relation.

The present paper pursues previous work by the authors. In addition to [17]

and [19] commented upon above, the following pages include and generalize to

all logics determined by the 6 expansions of MK3 (with only one designated

value) results of [18] and [16] where equivalent o-semantics and u-semantics

are defined for Łuksiewicz’s 3-valued logic Ł3 and positive 3-valued logic G3

expanded with a Łukasiewicz type negation, respectively.

In section 8 of the paper (“Concluding remarks”), we briefly comment upon

some related work to the results in the present paper called to our attention by

the referees of the JANCL.

The structure of the paper is as follows. In §2, we define some preliminary

notions as, e.g., “Kleene’s strong 3-valued matrix” or “natural conditional”. In

§3, six different Hilbert-type axiomatic systems are defined. It will be proved

that each one of these systems is determined by one of the six natural implicative

expansions of MK3 with only one designated value. The six systems are defined

in a general and unified way taking Routley and Meyer’s basic logic B (cf. [20],

Chapter 4) as a reference point. In §4, equivalent o-semantics and u-semantics

are provided for each one of the six systems defined in §3 and the soundness

theorems are proved. In §5, we demonstrate a number of properties of theories

built upon some or all of the six logics defined in §3. These properties are

essentially used in the completeness proofs developed in §6. So far, only weak

soundness and completeness theorems have been proved. In §7, truth-preserving

and degree of truth-preserving consequence relations are defined together with

their corresponding o-relations and/or u-relations. Then, strong soundness and

completeness theorems are proved w.r.t. each one of these relations. The paper

is ended in §8 with some remarks on the results obtained.

2 Natural implicative expansions of MK3

In this section, Kleene’s strong 3-valued matrix and all its natural implicative

expansions are recalled. Firstly, we state some preliminary definitions where we

recall some basic notions as used in the present paper.

Definition 2.1 (Language) The propositional language consists of a denu-

merable set of propositional variables 0 1    and some or all of the fol-

lowing connectives → (conditional), ∧ (conjunction), ∨ (disjunction), ¬ (nega-
tion). The biconditional (↔) and the set of wffs are defined in the customary
way.  etc. are metalinguistic variables.

Definition 2.2 (Logics) A logic L is a structure (L, `L ) where L is a propo-
sitional language and `L is a (proof-theoretical) consequence relation defined on
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L by a set of axioms and a set of rules of inference. The notions of ‘proof’ and
‘theorem’ are understood as it is customary in Hilbert-style axiomatic systems

(Γ `L  means that  is derivable in L from the set of wffs Γ; and `L  means

that  is a theorem of L).

Definition 2.3 (Extensions and expansions) Let L and L0 be two proposi-
tional languages. L0 is a strengthening of L if the set of wffs of L is a proper
subset of the set of wffs of L0. Next, let L and L0 be two logics built upon the
propositional languages L and L0, respectively. Moreover, suppose that all ax-
ioms of L are theorems of L0 and all primitive rules of inference of L are provable
in L0. Then, L0 is an extension of L if L and L0are the same propositional lan-
guage; and L0 is an expansion of L if L0 is an strengthening of L. An extension
L0 of L is a proper extension if L is not an extension of L0.

Definition 2.4 (Logical matrix) A (logical) matrix is a structure (V F)
where (1) V is a (ordered) set of (truth) values; (2)  is a non-empty proper

subset of V (the set of designated values); and (3) F is the set of -ary functions
on V such that for each -ary connective  (of the propositional language in

question), there is a function  ∈ F such that V → V.

Definition 2.5 (M-interpretation, M-validity) Let M be a matrix for (a

propositional language) L. An M-interpretation  is a function from the set of

all wfffs to V according to the functions in F. Then, ²M  ( is M-valid;  is

valid in the matrix M) iff () ∈  for all M-interpretations .

We point out that the truth-preserving and degree of truth-preserving con-

sequece relations definable in the matrices of interest in this paper are defined

in Definition 7.1.

Definition 2.6 (Kleene’s strong 3-valued matrix) The propositional lan-

guage consists of the connectives ∧∨¬. Kleene’s strong 3-valued matrix, MK3
(our label), is the structure (V F) where (1) V = {0 1 2} and it is ordered
as shown in the following lattice

(2)  = {1 2} or  = {2}; (3) F = {∧ ∨ ¬} where ∧ and ∨ are defined
as the glb (or lattice meet) and the lub (or lattice joint), respectively, ¬ is an
involution with ¬(2) = 0 ¬(0) = 2 and ¬(1) = 1. We display the tables for
∧, ∨ and ¬:
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∧ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

∨ 0 1 2
0 0 1 2
1 1 1 2
2 2 2 2

¬ 0
0 2
1 1
2 0

The notions of an MK3-interpretation and MK3-validity are defined accord-

ing to the general Definition 2.5.

In what follows, all natural implicative expansions of MK3 are defined.

Firstly, we define the notion of a natural conditional and the set of all nat-

ural conditionals in 3-valued matrices where V is as in MK3.
Following Tomova [24], we define “natural conditionals” as follows.

Definition 2.7 (Natural conditionals) Let L be a propositional language with
→ among its connectives and M be a matrix for L where the values  and  rep-
resent the supremum and the infimum of V. Then, an →-function on V defines

a natural conditional if the following conditions are satisfied:

1. → coincides with (the →-function for) the classical conditional when
restricted to the subset { } of V.

2. → satisfies Modus ponens, that is, for any   ∈ V, if  →  ∈  and

 ∈ , then  ∈ .

3. For any   ∈ V, →  ∈  if  ≤ .

Proposition 2.8 (Natural conditionals in 3-valued matrices) (a) Two

designated values: Let L be a propositional language and M be a 3-valued matrix

where V is defined exactly as in MK3 and  = {1 2}. Now, consider the 24 →
functions defined in the following general table:

TI

→ 0 1 2
0 2 1 2
1 0 2 3
2 0 1 2

where  (1 ≤  ≤ 3) ∈ {1 2} and 1 ∈ {0 1 2}. The set of functions

contained in TI is the set of all natural conditionals definable in M.

(b) One designated value: Now, let M and V be as above but  = {2}.
Consider the 6 → functions in the following general table:

TII

→ 0 1 2
0 2 2 2
1  2 2
2 0  2

where  ∈ {0 1 2} and  ∈ {0 1}. The set of functions contained in TII is
the set of all natural conditionals definable in M.
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Proof. It is obvious (cf. [17], [19]. These tables can be found in [23] and [25],

in addition to [24] (we owe this remark to a referee of the JANCL).

Next, all natural implicative expansions of MK3 are defined.

Definition 2.9 (Natural implicative expansions of MK3) (a) Two des-

ignated values: There are exactly 24 natural implicative expansions of MK3,

which are defined as follows. Each one of them is the structure (V F) where
V ∧ ∨ and ¬ are defined exactly as in MK3 (cf. Definition 2.6, with

 = {1 2}), whereas → is defined according to one of the tables in TI. (b)

Only one designated value: There are exactly 6 natural implicative expansions

of MK3, which are defined as follows. Each one of them is the structure (V

F) where V ∧ ∨ and ¬ are defined exactly as in MK3 (cf. Definition 2.6,
with  = {2}), whereas → is defined according to one of the the tables in TII.

The notions of M-interpretation and M-validity are understood according to the

general Definition 2.5.

The aim of this paper is to provide equivalent underdetermined and overde-

termined BD-semantics for the logics determined by the expansions of MK3

with only one designated value defined above in Definition 2.9 (cf. Definition

7.4). For the reader’s convenience, we display the six tables (designated values

are starred):

t1

→ 0 1 2
0 2 2 2
1 0 2 2
*2 0 0 2

t2

→ 0 1 2
0 2 2 2
1 1 2 2
*2 0 1 2

t3

→ 0 1 2
0 2 2 2
1 0 2 2
*2 0 1 2

t4

→ 0 1 2
0 2 2 2
1 1 2 2
*2 0 0 2

t5

→ 0 1 2
0 2 2 2
1 2 2 2
*2 0 1 2

t6

→ 0 1 2
0 2 2 2
1 2 2 2
*2 0 0 2

We shall refer by Mt (1 ≤  ≤ 6) to the expansion of MK3 defined upon the
table t; and by Lt (1 ≤  ≤ 6) to the logic determined by Mt.
We note that Lt2 is a logic equivalent to Łukasiewicz’s 3-valued logic Ł3.

Lt3 is a logic equivalent to G3Ł (cf. [16]) and Lt5 is treated in [12] (cf. p. 65).

But the logics determined by Mt1, Mt4 and Mt6 have not been considered in

the literature, as far as we know. (However, see section 8.)

3 The Lt-logics

We shall generally refer by the term Lt-logics to the logics determined by the

Mt-implicative expansions of MK3 defined in Definition 2.9(b). We shall ax-

iomatize the Lt-logics in a general and unified way. We use Routley and Meyer’s

basic logic B, which is defined below (cf. [20], Chapter 4).
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Definition 3.1 (The logic B) Routley and Meyer’s basic logic B is axioma-

tized with the following axioms and rules of inference.

Axioms:

A1. ( ∧)→  / ( ∧)→ 

A2. [(→ ) ∧ (→ )]→ [→ ( ∧)]
A3. → ( ∨) /  → ( ∨)

A4. [(→ ) ∧ ( → )]→ [( ∨)→ ]

A5. [ ∧ ( ∨ )]→ [( ∧) ∨ ( ∧ )]
A6. → ¬¬
A7. ¬¬→ 

Rules of inference:

Adjunction (Adj):  &  ⇒  ∧
Modus Ponens (MP): →  & ⇒ 

Suffixing (Suf): (→ )⇒ ( → )→ (→ )

Prefixing (Pref): ( → )⇒ (→ )→ (→ )

Contraposition (Con): (→ )⇒ ¬ → ¬

We recall some theorems of B.

Proposition 3.2 (Some theorems of B) The following theorems are prov-

able in B (cf. [20], Chapter 4): (T1)  → ; (T2) ¬( ∨ ) ↔ (¬ ∧ ¬);
(T3) ¬( ∧)↔ (¬ ∨ ¬).
We note the following remark.

Remark 3.3 (The positive fragment of B) The positive (i.e., negationless)

fragment of B, B+, is axiomatized with T1, A1-A5, Adj, MP, Suf and Pref (cf.

[20], Chapter 4).

Next, we define the logic b3, which is included in each one of the Lt-logics

(the label b3 is intended to abbreviate “basic logic contained in the six Lt-

logics”). Then, two extensions of b3, b31 and b
3
2, are defined. Lt1 through Lt4

are extensions of the former, whereas Lt5 and Lt6 include the latter.

Definition 3.4 (The logic b3) The basic logic b3 is axiomatized with A1-A7,

( ∧ ¬) → ( ∨ ¬) (A8), Adj, MP, Suf and Pref. That is, b3 is the result
of adding A6, A7 and A8 to B+. Or, from another point of view, it is B minus

Con and plus A8.
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Definition 3.5 (The logic b31) The logic b
3
1 is the result of adding the rule Veq

and the following axioms to B plus A8 (or b3 plus Con) (“Verum e quodlibet”

means “A true proposition follows from any proposition”):

Axioms:

A9. ¬→ [ ∨ (→ )]

A10.  → [¬ ∨ (→ )]

A11. [¬(→ ) ∧ (¬ ∧)]→ 

A12. [(→ ) ∧]→ (¬ ∨)
A13. [(→ ) ∧ ¬]→ (¬ ∨)

Rule: “Verum e quodlibet” (Veq). ⇒  → 

In the following proposition, some theorems and a rule of b31 are remarked.

Proposition 3.6 (Some theorems of b31) The rule Efq and the following the-

orems are provable in b31 (“E falso quodlibet” means “Any proposition follows

from a false proposition”): (T4) [¬(→ )∧¬]→ ; (T5) [¬(→ )∧]→
¬; (T6) ( ∨ ¬) ∨ ( → ); (T7) ( ∧ ¬) → [¬( → ) ∨ ¬]; (T8)
( ∧ ¬)→ [¬(→ ) ∨]; “E falso quodlibet” (Efq). ⇒ ¬→ .

Proof. T4, T5, T7 and T8 are easily derivable from B and A9, A10, A12 and

A13, respectively (by using Con, A6, A7 and the De Morgan laws T2 and T3).

Then, T6 is derivable by Con, A11, A6, A7 and the De Morgan laws, and,

finally, Efq follows by Veq, Con and A7.

Next, the Lt-logics Lt1 through Lt4 are defined as extensions of b31.

Definition 3.7 (The Lt-logics Lt1-Lt4) The Lt-logics Lt1 through Lt4 are

the result of adding the following axioms to b31.

Lt1:

A14. [(→ ) ∧]→ 

A15. [(→ ) ∧ ¬]→ ¬
Lt2:

A16. → ( → )

A17. ¬→ (→ )

Lt3:

A14. [(→ ) ∧]→ 

A16. → ( → )

Lt4:

A15. [(→ ) ∧ ¬]→ ¬
A17. ¬→ (→ )
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Some theorems of Lt1-Lt4 are pointed out below.

Proposition 3.8 (Some theorems of Lt1-Lt4) The following theorems are

proved in Lt1-Lt4: (T9)  → [ ∨ ¬( → )] in Lt1 and Lt4; (T10) ¬ →
[¬ ∨ ¬(→ )] in Lt1 and Lt3; (T11) ¬(→ )→ ( ∧ ¬) in Lt2; (T12)
¬(→ )→ ¬ in Lt2 and Lt3; (T13) ¬(→ )→  in Lt2 and Lt4.

Proof. T9 (resp., T10): by A15 (resp., A14), Con and T3, T6, T7; T12: by

Con and A16; T13: by Con, A17 and A7; T11: by T12 and T13.

Definition 3.9 (The logic b32) The logic b
3
2 is the result of adding the follow-

ing axioms to b3:

A14. [(→ ) ∧]→ 

A16. → ( → )

A17. ¬→ (→ )

A18.  ∨ (→ )

A19. ¬( ∨)↔ (¬ ∧ ¬)
A20. ¬( ∧)↔ (¬ ∨ ¬)
A21. ( ∧ ¬)→ [¬ ∨ ¬(→ )]

A22. [¬(→ ) ∧ (¬ ∨)]→ 

Next, Lt5 and Lt6 are defined as extensions of b32.

Definition 3.10 (The logics Lt5 and Lt6) The logics Lt5 and Lt6 are the

result of adding the following axioms to b32:

Lt5:

A23. ¬(→ )↔ ( ∧ ¬)
Lt6:

A24. → [ ∨ ¬(→ )]

A25. [(→ ) ∧ ( ∧ ¬)]→ 

Given the axiomatizations defined above, it is not difficult to provide more

conspicuous formulations of the Lt-logics –cf. [17], §9 and [19], §10.

4 BD-semantics for the Lt-logics

In this section, we define a BD-semantics for each one of the Lt-logics. We will

define two types of models, underdetermined models (u-models) and overde-

termined models (o-models). It will be proved that each Lt-logic is (weakly)

sound (this section) and weakly complete (section 6) w.r.t. both its correspond-

ing u-models and o-models. Strong soundness and completeness are treated in

section 7.
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In the first place, we define the general notions of a u-model and an o-model.

Then, uLt-models and oLt-models are defined. By a semantics, we mean a

class of models together with the accompanying notion of validity. Thus, for

instance, an oLt2-semantics is formed by the class of all oLt2-models and the

annexed definition of oLt2-validity (cf. Definitions 4.5 and 4.6 below).

Definition 4.1 (u-models) An underdetermined model (u-model) is a struc-

ture ( ) where (i)  = {{} {} ∅} and (ii)  is a u-interpretation from
the set of all wffs to , this notion being defined according to the following

conditions for each propositional variable  and wffs : (1) () ∈ ; (2a)

 ∈ (¬) iff  ∈ (); (2b)  ∈ (¬) iff  ∈ (); (3a)  ∈ ( ∧ ) iff
 ∈ () and  ∈ (); (3b)  ∈ ( ∧ ) iff  ∈ () or  ∈ (); (4a)
 ∈ ( ∨ ) iff  ∈ () or  ∈ (); (4b)  ∈ ( ∨ ) iff  ∈ () and
 ∈ (); (5a) there are two possibilities for assigning  to conditionals: (5a1)
 ∈ ( → ) iff  ∈ () or  ∈ () or [ ∈ () and  ∈ ()]; (5a2)
 ∈ ( → ) iff  ∈ () or  ∈ (); (5b) there are four possibilities for
assigning  to conditionals: (5b1)  ∈ (→ ) iff [ ∈ () and  ∈ ()]
or [ ∈ () and  ∈ ()]; (5b2)  ∈ (→ ) iff  ∈ () and  ∈ ();
(5b3)  ∈ (→ ) iff  ∈ () and  ∈ (); and (5b4)  ∈ (→ ) iff
 ∈ () and  ∈ ().

Then, underdetermined Lt-models (uLt-models) are defined as follows.

Definition 4.2 (uLt-models) For all  (1 ≤  ≤ 4), uLt-models are u-models
with clauses (1)-(4b), 5a1 and 5b. Then, uLt5-models are u-models with clauses

5a2 and 5b2; and uLt6-models are u-models with clauses 5a2 and 5b4.

Definition 4.3 (uLt-validity) Let M be a uLt-model (1 ≤  ≤ 6).  is true

in M (in symbols, ²uM ) iff  ∈ () ( is the uLt-interpretation defined in
M); and  is valid in uLt-semantics (in symbols, ²uLt ) iff  is true in all

uLt-models M.

Next, o-models and o-validity are defined.

Definition 4.4 (o-models) An o-model is a structure ( ) where (i)  =
{{} {} { }} and (ii)  is an o-interpretation from the set of all wffs to

, this notion being defined according to clauses 1, 2a, 2b, 3a, 3b, 4a and

4b in Definition 4.1 for each propositional variable  and wffs , while the

clauses for the conditional are as follows. (5a) There are four possibilities for

assigning  to conditionals: (5a1)  ∈ (→ ) iff  ∈ () or  ∈ () or
[ ∈ () and  ∈ ()]; (5a2)  ∈ (→ ) iff  ∈ () or  ∈ (); (5a3)
 ∈ (→ ) iff  ∈ () or  ∈ (); (5a4)  ∈ (→ ) iff  ∈ () or
 ∈ (); (5b) there are two possibilities for assigning  to conditionals: (5b1)

 ∈ (→ ) iff [ ∈ () and  ∈ ()] or [ ∈ () and  ∈ ()]; (5b2)
 ∈ (→ ) iff  ∈ () and  ∈ ().

Then, overdetermined Lt-models (oLt-models) are defined as follows.
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Definition 4.5 (oLt-models) For all  (1 ≤  ≤ 4), oLt-models are o-models
with clauses (1)-(4b), 5a and 5b1. Then, oLt5-models are o-models with clauses

5a2 and 5b2, and oLt6-models are o-models with clauses 5a4 and 5b2.

Definition 4.6 (oLt-validity) Let M be an oLt-model (1 ≤  ≤ 4).  is true
in M (in symbols, ²oM ) iff  ∈ () ( is the oLt-interpretation defined in
M); and  is valid in oLt-semantics (in symbols, ²oLt ) iff  is true in all

oLt-models M.

We note the following remark:

Remark 4.7 (Alternative interpretations of the conditional) Of course,

there are other possibilities for assigning  (resp.,  ) to conditionals in u-models

(resp., o-models) (cf. [17] and [19]). Here we have restricted ourselves to the

conditions of interest for interpreting the logics Lt1 through Lt6.

Next, it is proved that the valuation relation ²Mt (cf. Definition 2.9) and
the relations ²uLtand ²oLt just defined are coextensive. Then, (weak) soundness
of each Lt-logic w.r.t. the three valuation relations will follow immediately.

Firstly, the notion of corresponding interpretation is defined and a proposi-

tion on corresponding interpretations is proved.

Definition 4.8 (Corresponding interpretations) Let  be a u-interpretation.

The corresponding Mt-interpretation to ,  0, is defined as follows. For each
propositional variable, we set: (1) () = {} iff  0() = 2; (2) () = ∅ iff
 0() = 1; and (3) () = {} iff  0() = 0. Then, complex wffs are evalu-
ated as stated in Definition 2.9. Conversely, given an Mt-interpretation , the

corresponding u-interpretation,  0, is defined similarly w.r.t. propositional vari-
ables, whereas complex wffs are, of course, evaluated according to clauses 2-5 in

Definition 4.1.

On the other hand, corresponding Mt-interpretations (resp., o-interpretations)

to o-interpretations (resp., Mt-interpretations) are defined similarly, except

that now complex wffs are evaluated with Definition 2.9 (in the case of Mt-

interpretations) and Definition 4.4 (in the case of o-interpretations), while propo-

sitional variables are interpreted as follows ( stands for the o-interpretation

and  0 for the Mt-interpretation in question): (1) () = {} iff  0() = 2; (2)
() = { } iff  0() = 1; and (3) () = {} iff  0() = 0.

Proposition 4.9 (Equivalence of corresponding interpretations) (I) Let

 be a u-interpretation (resp., Mt-interpretation) and  0 be the Mt-interpretation
(resp., u-interpretation) corresponding to . Then, for each wff , we have: (1)

() = {} iff  0() = 2; (2) () = ∅ iff  0() = 1; and (3) () = {} iff
 0() = 0.
(II) Let  be an o-interpretation (resp., Mt-interpretation) and  0 be the

Mt-interpretation (resp., o-interpretation) corresponding to . Then, for each

wff , we have: (1) () = {} iff  0() = 2; (2) () = { } iff  0() = 1;
and (3) () = {} iff  0() = 0.
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Proof. By an easy induction on the length of .

Proposition 4.10 (Coextensiveness of ²Mt, ²uLt and ²oLt) For any  (1 ≤
 ≤ 6) and wff , (1) ²Mt  iff ²uLt ; (2) ²Mt  iff ²oLt .

Proof. Immediate by Definitions 2.9, 4.3, 4.6 and Proposition 4.9.

Now, we can prove (weak) soundness.

Theorem 4.11 (Soundness of Lt w.r.t. ²Mt) For any  (1 ≤  ≤ 6) and
wff , if `Lt , then ²Mt .
Proof. Given a particular logic Lt, it is easy to check that the rules Adj, MP,

Suf, Pref, Veq –and Con in the case of Lt1-Lt4– preserve Mt-validity (if

the premises of each rule are MLt-valid, so is its conclusion). On the other

hand, the axioms of Lt are assigned the value 2 by any Mt-interpretation .

Consequently, if `Lt , then ²Mt . (In case a tester is needed, the reader can
use that in [9].)

Finally, we have the following corollary establishing soundness w.r.t. ²uLt
and ²oLt.

Corollary 4.12 (Soundness w.r.t. ²uLt and ²oLt) For any  (1 ≤  ≤ 6)
and wff , if `Lt , then (1) ²uLt  and (2) ²oLt .

Proof. Immediate by Proposition 4.10 and Theorem 4.11.

5 Theories and their properties

In what follows, we prove some properties of b3 and its extensions or expansions.

These properties will be used in the completeness proofs to follow. We begin

by defining the notion of a b3-theory and the classes of b3-theories of interest in

the present paper (by EL, we generally refer to an extension –or an expansion,

as the case may be– of the logic L; cf. Definition 2.3).

Definition 5.1 (Eb3-theories) Let L be an Eb3-logic. An L-theory is a set

of wffs closed under Adjunction (Adj) and provable L-entailment (L-ent). That

is, T is an L-theory if whenever  ∈ T , then  ∧  ∈ T ; and if whenever
→  is a theorem of L and  ∈ T , then  ∈ T (L-ent).

Definition 5.2 (Classes of Eb3-theories) Let L be an Eb3-logic and T an

L-theory. We set: (1) T is prime iff whenever  ∨  ∈ T , then  ∈ T or

 ∈ T ; (2) T is regular iff T contains all theorems of L; (3) T is complete iff

for any wff ,  ∈ T or ¬ ∈ T ; (4) T is trivial iff it contains all wffs; (5) T
is a-consistent (consistent in an absolute sense) iff T is not trivial. Finally, (6)
T is consistent iff it is not inconsistent (T is inconsistent iff  ∧ ¬ ∈ T for

some wff ).

Then, we have:
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Proposition 5.3 (Eb3-theories and double negation) Let L be an Eb3-logic

and T an L-theory. Then,  ∈ T iff ¬¬ ∈ T .
Proof. Immediate by A6 and A7, given that T is closed under L-ent.

Proposition 5.4 (Conjunction and disjunction in prime Eb3-theories)

Let L be an Eb3-logic and T be a prime L-theory. Then, (1)  ∧  ∈ T iff

 ∈ T and  ∈ T ; (2) ¬( ∧) ∈ T iff ¬ ∈ T or ¬ ∈ T ; (3)  ∨ ∈ T
iff  ∈ T or  ∈ T ; (4) ¬( ∨) ∈ T iff ¬ ∈ T and ¬ ∈ T .
Proof. Immediate by B+ (cf. Remark 3.3) and the De Morgan laws (cf. T2

and T3 –Proposition 3.2; A19 and A20 –Definition 3.9).

Next, we remark some fundamental properties of the conditional in Eb31-

logics and Eb32-logics. We consider prime, complete and a-consistent Eb31-

theories (resp., Eb32-theories) as well as prime, regular and consistent Eb
3
1-

theories (resp., Eb32-theories).

Proposition 5.5 (→ in prime, complete, a-consistent Eb31-theories) Let

L be an Eb31-logic and T be a prime, complete and a-consistent L-theory. Then,

¬(→ ) ∈ T iff [ ∈ T and  ∈ T ] or [¬ ∈ T and ¬ ∈ T ].
Proof. From left to right (⇒): Suppose (1) ¬(→ ) ∈ T and, for reductio,

that one of the next four alternatives follows. (2)  ∈ T & ¬ ∈ T ; (3)
 ∈ T & ¬ ∈ T ; (4)  ∈ T & ¬ ∈ T or (5)  ∈ T & ¬ ∈ T . But these
four alternatives are impossible: (2) by [¬(→ )∧¬]→  (T4); and (5) by

[¬(→ ) ∧]→ ¬ (T5). Then, the impossibility of (3) and (4) are proved

as follows. Let  be an arbitrary wff. By (4) and [¬(→ )∧ (¬∧)]→ ,

we get (A11)  ∈ T , contradicting the a-consistency of T . Finally, given (3),
we have ¬ ∈ T and  ∈ T , since T is complete. Then, the impossibility of

(3) is shown similarly as that of (4).

From right to left (⇐): Suppose (1)  ∈ T and  ∈ T . By completeness
of T , we have ¬ ∈ T . Then, ¬(→ ) ∈ T follows by ( ∧ ¬)→ [¬(→
) ∨ ] (T8) and the primeness of T . Suppose now (2) ¬ ∈ T and ¬ ∈ T .
Then, ¬( → ) ∈ T follows similarly as in the precedent case by using now

( ∧ ¬)→ [¬(→ ) ∨ ¬] (T7).

Proposition 5.6 (→ in prime, regular, consistent Eb31-theories) Let L be

an Eb31-logic and T be a prime, regular and consistent L-theory. Then,  →
 ∈ T iff ¬ ∈ T or  ∈ T or ( ∈ T and ¬ ∈ T ).
Proof. (⇒): Suppose (1) →  ∈ T and, for reductio, (2) ¬ ∈ T &  ∈ T
&  ∈ T or (3) ¬ ∈ T &  ∈ T & ¬ ∈ T . But 2 and 3 are impossible
by A12 and A13, respectively, since T is prime.

(⇐): (1) Suppose ¬ ∈ T . We get  ∈ T since T is consistent. Then

 →  ∈ T follows by ¬ → [ ∨ ( → )] (A9) and primeness of T . (2)
Suppose  ∈ T . By consistency of T , we have ¬ ∈ T . Then  →  ∈ T is

derivable similarly as in case (1) by using now  → [¬ ∨ (→ )] (A10). (3)
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Suppose  ∈ T and ¬ ∈ T . As T is regular, (∨¬)∨ (→ ) ∈ T by T6.
Then, we have →  ∈ T by primeness of T .

Proposition 5.7 (→ in prime, complete, a-consistent Eb32-theories) Let

L be an Eb32-logic and T be a prime, complete and a-consistent L-theory. Then,

¬(→ ) ∈ T iff ¬ ∈ T and ¬ ∈ T .
Proof. Similar to those of Propositions 5.5 and 5.6, by using now (∧¬)→
[¬ ∨ ¬(→ )] (A21) and [¬(→ ) ∧ (¬ ∨)]→  (A22).

Proposition 5.8 (→ in prime, regular, consistent Eb32-theories) Let L be

an Eb32-logic and T be a prime, regular and consistent L-theory. Then,  →
 ∈ T iff  ∈ T or  ∈ T 
Proof. Similar to those of Propositions 5.5, 5.6 and 5.7 by using now [( →
) ∧]→  (A14), → ( → ) (A16) and  ∨ (→ ) (A18).
We prove an additional property of Eb3-logics and then the primeness lemma.

Proposition 5.9 (Consistency or completeness) Let L be an Eb3-logic and

T be a prime L-theory. If T is inconsistent, then it is complete.

Proof. Immediate by A8.

Lemma 5.10 (Primeness) Let L be an Eb3-logic, T an L-theory and  a

formula such that  ∈ T . Then, there is a prime L-theory T 0such that T ⊆ T 0
and  ∈ T 0.
Proof. We extend T to a maximal theory T 0 such that  ∈ T 0. Then, it is
easy to show that T 0 is prime (cf., for example, the proof of Lemma 5.13 in
[17]. This proof holds for any logic L that includes the positive fragment of

Anderson and Belnap’s First Degree Entailment logic, FDE+ (cf. [1], §15.2),

provided that L-theories are defined similarly as Eb3-theories, that is, as sets of

formulas closed under L-ent and Adj).

In Propositions 5.5, 5.6, 5.7 and 5.8, we have set down some fundamental

properties of the conditional in Eb3-logics, Eb31-logics and Eb
3
2-logics. In what

follows, the essential properties of the conditional in the Eb31- and Eb
3
2-logics Lt1

through Lt6 are added to the aforementioned (and more general) properties.

Proposition 5.11 (→ in prime, complete, a-consistent Lt-theories) Let

L be an ELt-logic where Lt will refer in each case to one of the extensions of

b3 displayed in Definitions 3.7 and 3.10. And let T be a prime, complete and

a-consistent L-theory. We have: ELt1-logics: →  ∈ T iff  ∈ T or ¬ ∈ T
or [¬ ∈ T and  ∈ T ]; ELt2-logics: →  ∈ T iff ¬ ∈ T or  ∈ T ; ELt3-
logics:  →  ∈ T iff  ∈ T or  ∈ T ; ELt4-logics:  →  ∈ T iff ¬ ∈ T
or ¬ ∈ T ; ELt5-logics:  →  ∈ T iff ¬ ∈ T or  ∈ T ; ELt6-logics:
→  ∈ T iff ¬ ∈ T or ¬ ∈ T .
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Proof. It is similar to those of Propositions 5.5 through 5.8. (I) ELt1-logics (⇒)
Suppose (1) →  ∈ T and, for reductio, (2)  ∈ T & ¬ ∈ T & ¬ ∈ T
or (3)  ∈ T & ¬ ∈ T &  ∈ T . But (2) and (3) are impossible by [(→
) ∧ ¬] → ¬ (A15) and [( → ) ∧ ] →  (A14), respectively. (⇐) (1)
Suppose  ∈ T . By completeness, we have ¬ ∈ T . Then, →  ∈ T follows
by ¬→ [∨ (→ )] (A9) and primeness. (2) Suppose ¬ ∈ T . We deduce
 →  ∈ T similarly as in case (1) but by using now  → [¬ ∨ ( → )]
(A10). (3) Suppose ¬ ∈ T and  ∈ T . Further, let  be an arbitrary wff and,
for reductio, →  ∈ T . By completeness, we obtain ¬(→ ) ∈ T , whence,
by [¬( → ) ∧ (¬ ∧ )] →  (A11),  ∈ T is derivable, contradicting the

a-consistency of T .
The cases for ELt2-logics, ELt3-logics, ELt4-logics, ELt5-logics and ELt6-

logics are proved similarly. In particular, it suffices to use the properties of

T mentioned in the statement of Proposition 5.11 and the following theorems.

ELt2-logics: [(→ )∧]→ (¬∨) (A12), → ( → ) (A16) and ¬→
(→ ) (A17). ELt3-logics: ¬→ [ ∨ ( → )] (A9), [(→ ) ∧ ] → 

(A14) and A16. ELt4-logics:  → [¬∨(→ )] (A10), [(→ )∧¬]→ ¬
(A15) and A17. ELt5-logics: A14, A16 and A17. ELt6-logics: A16, A17 and

[(→ ) ∧ ( ∧ ¬)]→  (A25).

Proposition 5.12 (→ in prime, regular, consistent Lt-theories) Let L

be an ELt-logic where Lt will refer in each case to one of the extensions of

b3 displayed in Definitions 3.7 and 3.10. And let T be a prime, regular and

consistent L-theory. We have: ELt1-logics: ¬( → ) ∈ T iff [ ∈ T and

 ∈ T ] or [¬ ∈ T and ¬ ∈ T ]; ELt2-logics: ¬( → ) ∈ T iff  ∈ T and

¬ ∈ T ; ELt3-logics: ¬( → ) ∈ T iff ¬ ∈ T and ¬ ∈ T ; ELt4-logics:
¬( → ) ∈ T iff  ∈ T and  ∈ T ; ELt5-logics: ¬( → ) ∈ T iff  ∈ T
and ¬ ∈ T ; ELt6-logics: ¬(→ ) ∈ T iff  ∈ T and  ∈ T .
Proof. Similar to those of Propositions 5.5 through 5.8. In particular, it suffices

to use the primeness, regularity and consistency of T together with the following
axioms and theorems.

ELt1-logics: ¬ → [ ∨ ( → )] (A9),  → [¬ ∨ ( → )] (A10),
[¬(→ )∧(¬∧)]→  (A11), (∨¬)∨(→ ) (T6), → [∨¬(→
)] (T9) and ¬ → [¬ ∨ ¬(→ )] (T10).
ELt2-logics: (∧¬)→ [¬(→ )∨¬] (T7) and ¬(→ )→ (∧¬)

(T11).

ELt3-logics: [¬( → ) ∧ ¬] →  (T4), ¬ → [¬ ∨ ¬( → )] (T10)
and ¬(→ )→ ¬ (T12).

ELt4-logics:  → [ ∨ ¬( → )] (T9), [¬( → ) ∧ ] → ¬ (T5) and

¬(→ )→  (T13).

ELt5-logics: ¬(→ )↔ ( ∧ ¬) (A23).
ELt6-logics: → ( → ) (A16), ∨(→ ) (A18) and → [∨¬(→

)] (A24).
Let us develop, for example, the case of ELt3-logics. (⇒) Suppose ¬( →

) ∈ T . If ¬ ∈ T , then  ∈ T follows by [¬( → ) ∧ ¬] →  (T4)
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contradicting the consistency of T . Thus, ¬ ∈ T . On the other hand, ¬ ∈ T
is immediate by ¬( → ) → ¬ (T12). (⇐) Suppose ¬ ∈ T and ¬ ∈ T .
Then ¬(→ ) ∈ T is deducible by the primeness of T and ¬ → [¬∨¬(→
)] (T10).

6 Completeness of the Lt-logics

We prove the (weak) completeness of the Lt-logics (1 ≤  ≤ 6) by using canon-
ical model constructions. As we have defined two types of models, uLt-models

and oLt-models (cf. Definitions 4.2 and 4.5), we need two types of canonical

models, “canonical uLt-models” and “canonical oLt-models”, which are based

upon the more basic notions of T uLt-interpretations and T oLt-interpretations,
respectively. We begin by defining the latter notions.

Definition 6.1 (T uLt-interpretations) Let  be the set {{} {} ∅} as in
Definition 4.1. And let T be a prime, regular and consistent Lt-theory. Then,

the function  from the set of all wffs to  is defined as follows: for each

propositional variable , we set (a)  ∈ () iff  ∈ T ; (b)  ∈ () iff ¬ ∈ T .
Next,  assigns a member of  to each wff  according to clauses 2a, 2b, 3a,

3b, 4a, 4b, 5a1 (or 5a2) and 5b (1 ≤  ≤ 6) in Definition 4.2. Then, it is said
that  is a T uLt-interpretation.

Definition 6.2 (T oLt-interpretations) Let  be the set {{} {} { }}
as in Definition 4.4. And let T be a prime, complete and a-consistent Lt-

theory. Then, the function  from the set of all wffs to  is defined similarly

as in Definition 6.1 in the case of propositional variables, but complex wffs

are assigned a member of  according to clauses 2a, 2b, 3a, 3b, 4a, 4b, 5a

(1 ≤  ≤ 6) and 5b1 (or 5b2) in Definition 4.5. Then, it is said that  is a
T oLt-interpretation.
Now, we can defined the canonical models.

Definition 6.3 (Canonical uLt-models) A canonical uLt-model is the struc-

ture ( T u) where is defined as in Definition 4.1 and T u is a T uLt-interpreta-
tion defined upon the Lt-theory T .

Definition 6.4 (The canonical relation ²T u ) Let (, T u) be a canonical
uLt-model. Then for any formula , ²T u  ( is a true in the canonical

uLt-model (, T u)) iff  ∈ T u().

Definition 6.5 (Canonical oLt-models) A canonical oLt-model is the struc-

ture ( T o) where is defined as in Definition 4.4 and T o is a T oLt—interpreta-
tion defined upon the Lt-theory T .

Definition 6.6 (The canonical relation ²T o ) Let (, T o) be a canonical
oLt-model. Then for any formula , ²T o  ( is a true in the canonical

oLt-model (, T o)) iff  ∈ T o().
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We immediately have the following proposition.

Proposition 6.7 (Canonical Lt-models are indeed Lt-models) Let M

be a canonical uLt-model (resp. oLt-model). Then, M is indeed a uLt-model

(resp., oLt-model).

Proof. Immediate by Definitions 4.2 and 6.3 (respectively, 4.5 and 6.5).

Given Proposition 6.7, the essential fact we have to prove in order to prove

completeness is that conditions (a) and (b) for propositional variables in Def-

initions 6.1 and 6.2 can be generalized to all formulas. This fact is proved in

Lemmas 6.8 and 6.9 below.

Lemma 6.8 (T uLt-interpreting the set of formulas) Let  be a T uLt-inter-
pretation defined upon the Lt-theory T . For each wff , we have: (1)  ∈ ()
iff  ∈ T ; (2)  ∈ () iff ¬ ∈ T .

Lemma 6.9 (T oLt-interpreting the set of formulas) Let  be a T oLt-inter-
pretation defined upon the Lt-theory T . For each wff , we have: (1)  ∈ ()
iff  ∈ T ; (2)  ∈ () iff ¬ ∈ T .
The proof of Lemma 6.8 (resp., Lemma 6.9) is by induction on the length of

 and is based upon the properties of prime, regular and consistent Lt-theories

(resp., prime, complete, and a-consistent Lt-theories) recorded in Propositions

5.3, 5.4, 5.6 (resp., 5.5), 5.8 (resp., 5.7) and 5.12 (resp., 5.11). By using the

aforementioned propositions, it is essentially shown that the clauses in Definition

4.2 (resp., Definition 4.5) hold in the corresponding uLt-models (resp., oLt-

models). The proof is similar to that of Lemma 9.5 in [19] (resp., Lemma 8.5 in

[17]). In the following proof, we provide details for two of the cases.

Proof. Lt1. ULt1-interpretations.  ∈ ( → ) iff (clause 5b1 –Definition
4.2) [ ∈ () and  ∈ ()] or [ ∈ () and  ∈ ()] iff (induction) [ ∈ T
and  ∈ T ] or [¬ ∈ T and ¬ ∈ T ] iff (Proposition 5.12) ¬(→ ) ∈ T .
Lt5. OLt5-interpretations.  ∈ ( → ) iff (clause 5a2 –Definition 4.5)

 ∈ () or  ∈ () iff (induction) ¬ ∈ T or  ∈ T iff (Proposition 5.11)

→  ∈ T .
Now, we can prove weak completeness of the Lt-logics w.r.t. the respective

matrix Mt.

Theorem 6.10 (Completeness of Lt-logics w.r.t. ²Mt) For any wff ,

if ²Mt , then `Lt .
Proof. Suppose that  is a wff such that 0Lt . We prove 2Mt . Let Lt
be the set of its theorems. By the Primeness Lemma (Lemma 5.10), there is

a prime Lt-theory T such that Lt ⊆ T and  ∈ T , whence it follows that T
is, in addition, regular and a-consistent. Suppose that T is inconsistent. Then,

T is complete (by Proposition 5.9) and so ¬ ∈ T . Moreover, T generates

a canonical oLt-model ( T o) defined upon the Lt-theory T (cf. Definition

6.5) such that  ∈ T o(), i.e., 2T o , and consequently, 2oLt  by Definition
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6.6. But, on the other hand, suppose that T is consistent. Then T generates

a canonical uLt-model ( T u) defined upon the Lt-theory T (cf. Definition

6.3) such that  ∈ T u(), i.e., 2u , and therefore, 2uLt  by Definition 6.4.

In consequence, if 0Lt  either 2oLt  or else 2uLt . So, by Proposition 4.10,
2Mt  follows, as it was to be proved.

As a corollary of Theorem 6.10, we have completeness of Lt w.r.t. ²oLt and
²uLt.

Corollary 6.11 (Completeness of Lt w.r.t. ²oLt and ²uLt) For any wff ,

(1) if ²oLt , then `Lt ; and (2) if ²uLt , then `Lt .
Proof. Immediate by Theorem 6.10 and Proposition 4.10.

7 The logics Lt2 and Lt≤

So far, logics have been understood as sets of theorems or, equivalently, as sets

of valid formulas. In this section, logics will be viewed in a more general way

as structures determined by consequence relations. We begin by defining the

notions of truth-preserving and degree of truth-preserving consequence relations

in the context of the natural implicative expansions of MK3 with only one

designated value.

Definition 7.1 (The relations ²2Mt and ²
≤
Mt ) Let Mt (1 ≤  ≤ 6) be one

of the natural implicative expansions of MK3 defined in Definition 2.9(b). There

are essentially two different ways of defining a consequence relation in Mt:

truth-preserving relation (denoted by ²2Mt) and degree of truth preserving re-
lation (denoted by ²≤Mt). These relations are defined as follows for any set

of wffs Γ and wff : (1) Γ ²2Mt  iff () ∈  whenever (Γ) ∈  for all

Mt-interpretations ; (2) Γ ²≤Mt  iff  ≤ () whenever  ≤ (Γ) for all
 ∈ V and Mt-interpretations . [ ∈ (Γ) iff ∀ ∈ Γ( ∈ ()); ∈ (Γ) iff
∃ ∈ Γ( ∈ ()); [(Γ) = inf{() |  ∈ Γ}].
In particular, ²2Mt  iff () ∈  for all Mt-interpretations ; and ²≤Mt 

iff  ≤ () for all  ∈ V and for all Mt-interpretations .
Γ ²2Mt  (resp., Γ ²≤Mt ) can be read “ is a consequence of Γ, according

to Mt in the truth-preserving (resp., degree of truth-preserving) sense”. And

²2Mt  (resp., ²≤Mt ) can be read “ is Mt-valid or  is valid in the matrix

Mt in the truth-preserving (resp., degree of truth-preserving) sense”.

These two notions of consequence are not equivalent as it is shown below.

Proposition 7.2 (Relation between ²2Mt and ²
≤
Mt ) Let Mt (1 ≤  ≤ 6)

be one of the natural implicative expansions of MK3 defined in Definition 2.9(b).

For any set of wffs Γ and any wff , (1) if Γ ²≤Mt , then Γ ²2Mt ; (2) the
converse of (1), however, does not hold.
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Proof. (1) It is immediate. (2) {¬} ²2Mt  holds for any wffs .

Consider, however, different propositional variables   and Mt-interpretation

 such that () = 1 and () = 0. Then, {¬} = 1, given this Mt-
interpretation .

However, we note the following remark.

Remark 7.3 (²≤Mt  iff ²2Mt ) Let Mt (1 ≤  ≤ 6) be one of the natural
implicative expansions of MK3 defined in Definition 2.9(b). Notice that ²≤Mt 
iff () = 2 for all Mt-interpretations . Thus, for every wff , ²≤Mt  iff

²2Mt .

Consider now the following definition.

Definition 7.4 (Logics determined by matrices) Let L be a propositional
language, M a matrix for L and `L a (proof theoretical) consequence relation
defined on L. Then, the logic L (cf. Definition 2.2) is determined by M iff for

every set of wffs Γ and wff , Γ `L  iff Γ ²M . In particular, the logic L

(considered as the set of its theorems) is determined by M iff for every wff ,

`L  iff ²M  (cf. Definition 2.5). Notice that ²M can be understood in the

truth-preserving or degree of truth-preserving sense.

Therefore, given the (weak) soundness and completeness theorems (Theo-

rems 4.11 and 6.10), we have that Lt, understood as the set of all theorems of

Lt, is the logic determined by the matrix Mt in the sense of Definition 7.4.

That is, the set of all valid formulas according to Mt and the set of all theorems

of Lt are one and the same set (1 ≤  ≤ 6).
Now, let us name Lt2 (resp., Lt≤) the logic determined by the relation

²2Mt (resp., ²
≤
Mt). The aim of this section is to define, for all  (1 ≤  ≤ 6), the

logics Lt2 and Lt≤ determined by the relations ²2Mt and ²
≤
Mt, respectively.

In order to fulfill this aim, we define relations equivalent to ²2Mt and ²
≤
Mt

in uLt-semantics and o-Lt-semantics. Then, we investigate which deductive

consequence relations ²2Mt and ²
≤
Mt are equivalent to.

Definition 7.5 (The relations ²u2Lt and ²o2Lt) For any  (1 ≤  ≤ 6), set
of wffs Γ and wff , (1) Γ ²u2Lt  iff  ∈ () whenever  ∈ (Γ) for all
uLt-interpretations ; (2) Γ ²o2Lt  iff  ∈ () whenever  ∈ (Γ) for all
oLt-interpretations .

Definition 7.6 (The relations ²u≤Lt and ²
o≤
Lt ) For any set of wffs Γ and wff

: (1) Γ ²u≤Lt  iff  ∈ (Γ) or  ∈ () or ( ∈ (Γ) and  ∈ ()) for

all uLt-interpretations . (2) Γ ²o≤Lt  iff  ∈ () whenever  ∈ (Γ) and
 ∈ () whenever  ∈ (Γ) for all oLt-interpretations .

Before proving the coextensiveness of the relations ²2Mt, ²u2Lt and ²o2Lt (resp.,
²≤Mt, ²

u≤
Lt and ²

o≤
Lt ), we note the following corollary of Proposition 4.9.
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Proposition 7.7 (Equivalence of corresponding interpretations II) (I)

Let  be a u-interpretation (resp., Mt-interpretation) and  0 the Mt-interpreta-
tion (resp., u-interpretation) corresponding to . Then, for each set of wffs Γ, we
have: (1) (Γ) = {} iff  0(Γ) = 2; (Γ) = ∅ iff  0(Γ) = 1; and (3) (Γ) = {}
iff  0(Γ) = 0.
(II) Let  be an o-interpretation (resp., Mt-interpretation) and  0 the Mt-

interpretation (resp., o-interpretation) corresponding to . Then, for each set

of wffs Γ, we have: (1)  ∈ (Γ) iff  0(Γ) = 2 or  0(Γ) = 1; (2)  ∈ (Γ) iff
 0(Γ) = 0 or  0(Γ) = 1.

Proof. Immediate by Proposition 4.9.

We prove:

Proposition 7.8 (Coextensiveness of ²≤Mt, ²
u≤
Mt and ²

o≤
Mt ) For any set

of wffs Γ and any wff , (1) Γ ²≤Mt  iff Γ ²u≤Mt ; (2) Γ ²
≤
Mt  iff Γ ²o≤Mt .

Proof. Firstly, we prove (2) (⇒) Suppose Γ ²≤Mt  and let  be an arbitrary

oLt-interpretation. We have to prove  ∈ (Γ) ⇒  ∈ () and  ∈ (Γ) ⇒
 ∈ (). We define the Mt-interpretation  0 corresponding to  (cf. Definition
4.8). Then, we have: (a) Suppose  ∈ (Γ). We consider two subcases:  ∈ (Γ)
and  ∈ (Γ). If  ∈ (Γ), then  0(Γ) = 1 (Proposition 7.7) and, by the
hypothesis,  0() = 1 or  0() = 2, that is,  ∈ () (Proposition 4.9). If
 ∈ (Γ), then  0(Γ) = 2 (Proposition 7.7), and by the hypothesis,  0() = 2,
that is,  ∈ () (and  ∈ ()), by Proposition 4.9. (b) Suppose  ∈ (Γ).
Then,  ∈ (Γ) since  ∈ (Γ) is not possible,  being an o-interpretation. So,
case (b) is proved as the second subcase of (a).

(2) (⇐) We omit references to Definition 4.8 and Propositions 4.9 and 7.7.
Suppose Γ ²o≤Lt  and let  be an arbitrary Mt-interpretation. We define the

oLt-interpretation  0 corresponding to . Next, we consider the three possible
values that  can assign to Γ. (a) (Γ) = 0. Then, (Γ) ≤ () is immediate.
(b) (Γ) = 1. Then,  ∈  0(Γ) and  ∈  0(Γ). By the hypothesis,  ∈  0().
Now, if  ∈  0(), then () = 1; and if  ∈  0() then () = 2. Thus,
in either case, we have (Γ) ≤ (). (c) (Γ) = 2. Then,  ∈  0(Γ) and
 ∈  0(Γ). By the hypothesis,  ∈  0() and  ∈  0(), whence () = 2. So,
(Γ) ≤ ().
(1) The proof is similar (cf. Proposition 12 in [18]).

If Γ is the empty set, then the proof follows by Proposition 4.9.

Proposition 7.9 (Coextensiveness of ²2Mt, ²u2Lt and ²o2Lt) For any  (1 ≤
 ≤ 6), set of wffs Γ and wff , (1) Γ ²2Mt  iff Γ ²u2Lt ; (2) Γ ²2Mt  iff

Γ ²o2Lt .

Proof. Immediate given Proposition 7.7 and Definitions 7.1 and 7.5.

In what follows, we investigate which deductive consequence relations the

relations ²2Mt and ²
≤
Mt correspond to.

Let L be an Lt-logic. The standard deductive consequence relation can be

defined as follows.
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Definition 7.10 (Standard deductive consequence relation) Let L be an

Lt-logic, Γ be a set of wffs and  a wff. Then, Γ `2L  ( is derivable from Γ
in L) iff there is a finite sequence of wffs 1   such that  is  and for

each  (1 ≤  ≤ ) one of the following is the case: (1)  ∈ Γ; (2)  is an

axiom of L; (3)  is the result of applying one of the rules Adj, MP, Suf, Pref,

Veq and Con (when present: in Lt1-Lt4) to one or two of the preceding wffs in

the sequence (cf. Definitions 3.1, 3.4, 3.7 and 3.10). By `2L , we shall refer to
this deductive relation and, by Lt2, to the logic (L`2Lt) (cf. Definition 2.2).
In [19] (Theorems 8.6 and 9.8), the following theorem is proved.

Theorem 7.11 (Strong sound. and compl. of Lt2 w.r.t. ²2Mt) For any

 (1 ≤  ≤ 6), set of wffs Γ and wff , Γ `2Lt  iff Γ ²2Mt .

Consequently, given Proposition 7.9, we have the following corollary.

Corollary 7.12 (Strong sound. and compl. of Lt2 w.r.t. ²u2Lt & ²o2Lt)
For any  (1 ≤  ≤ 6), set of wffs Γ and wff , (1) Γ `2Lt  iff Γ ²u2Lt ; (2)
Γ `2Lt  iff Γ ²o2Lt .

Proof. Immediate by Proposition 7.9 and Theorem 7.11.

As we have seen, the deductive relation just defined corresponds to the truth-

preserving relation ²2Mt. We consider an alternative to this standard deductive
relation.

Definition 7.13 (Alternative deductive consequence relation) Let L be

an Lt-logic, Γ be a set of wffs and  a wff. Then, Γ `≤L  ( is derivable

from Γ in L) iff there is a finite sequence of wffs 1   such that  is 

and for each  (1 ≤  ≤ ) one of the following is the case: (1)  ∈ Γ; (2)
 is a theorem of L; (3)  is the result of applying Adj or L-entailment to

two previous formulas in the sequence. By `≤L , we shall refer to this deductive
relation and, by Lt≤, to the logic (L`≤Lt) (cf. Definition 2.2).

We will prove Γ `≤Lt  iff Γ ²≤Mt  for each  (1 ≤  ≤ 4). We begin by
proving soundness. As pointed out below Lt5≤ (resp., Lt6≤) is not sound w.r.t.
²≤Mt5 (resp., ²

≤
Mt6).

Theorem 7.14 (Soundness of Lt w.r.t. ²≤Mt) For any  (1 ≤  ≤ 4), set
of wffs Γ and wff , if Γ `≤Lt , then Γ ²≤Mt .
Proof. The proof is by induction on the length of the proof of  from Γ. If
 ∈ Γ or  is by Adj, the proof is trivial; and it is immediate if  is a theorem
of Lt, since, by Theorem 4.11, all theorems of Lt are Mt-valid. So, suppose

that  is by L-entailment. Then, Γ `≤Lt  and `Lt  →  for some wff . Let

now  be an arbitrary Mt-interpretation. We have to show (Γ) ≤ (). By
hypothesis, we have (Γ) ≤ (); and, by Theorem 4.11, ( → ) = 2. Then,
there are three possibilities to consider.
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1. () = 2. Then, () = 2, according to Mt (cf. Definition 2.9(b)). So,
(Γ) ≤ ().

2. () = 0. Then, clearly (Γ) ≤ ().

3. () = 1. Then, () = 1 or () = 2, according to Mt (cf. Definition
2.9(b)). So, (Γ) ≤ ().

Remark 7.15 (Lt5 (resp., Lt6) is not sound w.r.t. ²≤Mt5 (resp., ²
≤
Mt6))

Notice that Lt5-ent (resp., Lt6-ent) is not verified by ²≤Mt5-semantics (resp.,
²≤Mt6 -semantics). Consider any Mt5-interpretation  (resp., Mt6-interpretation

) such that () = 1 and () = 0. Then, ( → ) = 2, but (Γ)  ().

As a corollary, we have soundness w.r.t. ²o≤Mt and ²
u≤
Mt.

Corollary 7.16 (Soundness of Lt w.r.t. ²o≤Lt and ²
u≤
Lt) For any  (1 ≤

 ≤ 4), set of wffs Γ and wff , if Γ `≤Lt , then (1) Γ ²o≤Lt  and (2) Γ ²u≤Lt .

Proof. Immediate by Proposition 7.8 and Theorem 7.14.

Contrary to what the case with soundness has been, in what follows we prove

completeness of Lt≤ for all  (1 ≤  ≤ 6) w.r.t. ²≤Mt and, consequently, w.r.t.
²o≤Lt and ²

u≤
Lt.

Firstly, we recall the notion of the set of consequences of a given set of

formulas in Lt and then we prove completeness.

Definition 7.17 (The set of consequences of Γ in Lt) The set of conse-
quences in Lt of a set of wffs Γ (in symbols, CΓ[Lt]) is defined as follows:

CΓ[Lt] = { | Γ `≤Lt }.
We note the following remark.

Remark 7.18 (The set of consequences of Γ in Lt is a regular theory)
It is obvious that for any Γ, CΓ[Lt] is a regular theory: it is closed by Adj,
Lt-ent, and contains all theorems of Lt (cf. Definitions 5.2 and 7.13).

Theorem 7.19 (Completeness w.r.t. ²≤Mt) For any  (1 ≤  ≤ 6), set of
wffs Γ and wff , if Γ ²≤Mt , then Γ `≤Lt .

Proof. Suppose Γ 0≤Lt  for some  (1 ≤  ≤ 6), set of wffs Γ and wff . We

prove Γ 2≤Mt . If Γ 0
≤
Lt , clearly  ∈ CΓ[Lt]. Then, by the primeness

lemma (Lemma 5.10), there is a prime Lt-theory T such that CΓ[Lt] ⊆ T
and  ∈ T , whence it follows that T is, in addition, regular (since CΓ[Lt] is
regular) and a-consistent. Suppose that T is inconsistent. Then, T is complete
(by Proposition 5.9). Therefore, T generates an oLt-interpretation T such
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that  ∈ T (T ) and  ∈ T (). Given that Γ ⊆ CΓ[Lt] ⊆ T ,  ∈ T (Γ). So,
Γ 2o≤Mt , by Definition 7.6.
On the other hand, suppose that T is consistent. Then, T generates a uLt-

interpretation T such that  ∈ T (T ) and  ∈ T (). As T is consistent,

there is no  ∈ T such that  ∈ T (): otherwise, ¬ ∈ T (by Lemma 6.8).

So,  ∈ T (T ). Now, as Γ ⊆ CΓ[Lt] ⊆ T ,  ∈ T (Γ). Then, Γ 2u≤Mt  follows
since  ∈ T (Γ),  ∈ T () and  ∈ T (Γ) (cf. Definition 7.6). Therefore, if
Γ 0≤Lt , either Γ 2

o≤
Mt  or Γ 2

u≤
Mt , whence Γ 2

≤
Mt  follows, by Proposition

7.8, as was to be proved.

As a corollary, we have completeness w.r.t. ²o≤Mt and ²
u≤
Mt.

Corollary 7.20 (Completeness of Lt≤ w.r.t. ²o≤Lt and ²
u≤
Lt) For any  (1

≤  ≤ 6), set of wffs Γ and wff , (1) if Γ ²o≤Lt , then Γ `≤Lt ; and (2) if
Γ ²u≤Lt , then Γ `≤Lt .
Proof. Immediate by Theorem 7.19 and Proposition 7.8.

8 Concluding remarks

We have the following facts concerning the logics determined by the 30 natural

implicative expansions of MK3.

1. In [17], an o-determined truth-preserving consequence relation is used for

axiomatizing the 24 natural implicative expansions of MK3 with two des-

ignated values (cf. Proposition 2.8 and Definition 2.9) in a unified and

general way. That is, we have proved for any  (1 ≤  ≤ 24), set of wffs
Γ and wff , Γ `2Mt  iff Γ ²o2Lt  where (L`2Lt) is the logic deter-
mined by the matrix Mt and ²o2Lt is the aforementioned o-determined
truth-preserving consequence relation.

2. In [19], a u-determined truth-preserving consequence relation is used for

axiomatizing the logics determined by the 6 natural implicative expansions

of MK3 with only one designated value (cf. Proposition 2.8 and Definition

2.9) in a general and unified way. That is, in the referred paper, it has been

proved for any  (1 ≤  ≤ 6), set of wffs Γ and wff , Γ `2Mt  iff Γ ²u2Lt 
where (L`2Lt) is the logic determined by the matrix Mt and ²u2Lt is the
aforementioned u-determined truth-preserving consequence relation.

3. In the present paper, we have proved the following facts: (a) if understood

as sets of theorems, or equivalently, as sets of valid formulas, the logics

determined by the 6 natural implicative expansions of MK3 with only one

designated value can be given equivalent u-semantics and o-semantics; (b)

for any  (1 ≤  ≤ 4), Lt≤ is sound and complete w.r.t. ²≤Mt. However,
Lt5≤ (resp., Lt6≤) is only complete, not sound w.r.t. ²≤Mt5 (resp., ²

≤
Mt6).
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4. For any  (1 ≤  ≤ 4), Lt≤ is a paraconsistent version of the logic (L`2Lt
) treated in [19] (cf. point (2) above and Proposition 7.2). Thus, for
example, Lt2≤ is the paraconsistent version of Łukasiewicz’s 3-valued logic
Ł3.

5. It is clear that the 24 logics investigated in [17] cannot be given a u-

semantics: the designated value 1 would have to be viewed as an under-

determined value. But an additional question is whether the logic Lt≤ is
sound and complete w.r.t. ²≤Mt (1 ≤  ≤ 24). Concerning this question
we note the two following facts.

(a) Consider the expansions of MK3 defined by the general table (desig-

nated values are starred):

TIII

→ 0 1 2
0 2 1 2
*1 0 2 3
*2 0 4 2

where  (1 ≤  ≤ 4) ∈ {1 2} (cf. Table I in Proposition 2.8). Let
MtIII refer to any of the 16 expansions of MK3 definable from the

tables in TIII (cf. Definition 2.9). LtIII is not sound w.r.t. ²≤MtIII:
for any MtIII-interpretation  and wffs  ( → ) = 2 or
(→ ) = 1 whenever () = 2 and () = 1.

(b) Consider the expansions of MK3 defined by the general table (desig-

nated values are starred):

TIV

→ 0 1 2
0 2 1 2
*1 0 2 3
*2 0 0 2

where  (1 ≤  ≤ 3) ∈ {1 2} (cf. Table I in Proposition 2.8). Let
MtIV refer to any of the 8 expansions of MK3 definable from the

tables in TIV (cf. Definition 2.9). LtIV is sound and complete w.r.t.

²≤MtIV : in fact, it would not be difficult to prove that Lt
≤
tIV and Lt

2
tIV

are equivalent logics (cf. Definition 2.2).

6. The referees of the IGPL have called our attention to some work related to

the research recorded in our paper. In particular, [14] and [15] study the

logics described in Definition 2.9 in a natural deduction setting, while [11]

investigates truth-functional extensions of Priest’s LP in the same context.

On the other hand, in [13], BD-semantics is defined for truth-functional

expansions of Anderson and Belnap’s First Degree Entailment Logic, FDE,

Priest’s LP and Kleene’s K3. Then, in [21], natural deduction systems for

the first order Belnap-Dunn logics are systematically explored by essen-

tially using Baaz’ delta operator. Finally, [22] proposes an extension of

LP with Rescher’s implication.

24



Funding. This work was supported by the Spanish Ministry of Economy, Indus-

try and Competitiveness [FFI2014-53919-P, FFI2017-82878-P]. - We sincerely

thank three referees of the IGPL for their comments and suggestions on a pre-

vious draft of this paper.

References

[1] Anderson, A. R., Belnap, N. D. Jr. (1975). Entailment. The Logic of Rele-

vance and Necessity, vol I. Princeton, NJ: Princeton University Press.

[2] Arieli, O., Avron, A. (1996). Reasoning with logical bilattices. Journal of

Logic, Language and Information, 5(1), 25-63.

[3] Arieli, O., Avron, A. (1998). The value of the four values. Artificial Intel-

ligence, 102, 97-141.

[4] Avron, A. (1991). Natural 3-Valued Logics—Characterization and Proof

Theory. Journal of Symbolic Logic, 56(1), 276-294.

[5] Belnap, N. D. Jr. (1977). How a computer should think. In G. Ryle (Ed.),

Contemporary Aspects of Philosophy (pp. 30-55). Oriel Press Ltd., Stocks-

field.

[6] Belnap, N. D. J.r (1977). A useful four-valued logic. In G. Epstein & J. M.

Dunn (Eds.), Modern Uses of Multiple-Valued Logic (pp. 8-37). D. Reidel

Publishing Co., Dordrecht.

[7] Dunn, J. M. (1976). Intuitive semantics for first-degree entailments and

“coupled trees.” Philosophical Studies, 29, 149-168.

[8] Dunn, J. M. (2000). Partiality and its Dual. Studia Logica, 65, 5-40.

https://doi.org/10.1023/A:1026740726955.

[9] González, C. (2012). MaTest. Retrieved from http://ceguel.es/matest (last

accessed 09/12/2018).

[10] Kleene, S. C. (1952). Introduction to Metamathematics. North Holland.

Reprinted Ishi Press, 2009.

[11] Kooi, B., Tamminga, A. (2012). Completeness via correspondence for ex-

tensions of the logic of paradox. The Review of Symbolic Logic, 5(4), 720-

730. https://doi.org/10.1017/S1755020312000196

[12] Kracht, M. (1998). On Extensions of Intermediate Logics by

Strong Negation. Journal of Philosophical Logic, 27(1), 49-73.

https://doi.org/10.1023/A:1004222213212.

[13] Omori, H., Sano, K. (2015). Generalizing Functional Complete-

ness in Belnap-Dunn Logic. Studia Logica, 103(5), 883-917.

https://doi.org/10.1007/s11225-014-9597-5.

25



[14] Petrukhin, Y. (2017). Natural Deduction for Three-Valued Reg-

ular Logics. Logic and Logical Philosophy, 26(2), 197—206.

https://doi.org/10.12775/LLP.2016.025.

[15] Petrukhin, Y., Shangin, V. (2018). Natural three-valued logics character-

ized by natural deduction. Logique et Analyse, 61(244).

[16] Robles, G., Méndez, J. M. (2014). A paraconsistent 3-valued logic re-

lated to Gödel logic G3. Logic Journal of the IGPL, 22 (4), 515-538.

https://doi.org/10.1093/jigpal/jzt046.

[17] Robles, G., Méndez, J. M. (2019). Belnap-Dunn semantics for natural

implicative expansions of Kleene’s strong three-valued matrix with two

designated values. Journal of Applied Non-Classical Logics, 29(1), 37-63.

https://doi.org/10.1080/11663081.2018.1534487.

[18] Robles, G., Salto, F., Méndez, J. M. (2014). Dual Equivalent Two-valued

Under-determined and Over-determined Interpretations for Łukasiewicz’s

3-valued Logic Ł3. Journal of Philosophical Logic, 43 (2/3), 303-332.

https://doi.org/10.1007/s10992-012-9264-0.

[19] Robles, G., Salto, F., Méndez, J. M. (Forthcoming). Belnap-Dunn seman-

tics for natural implicative expansions of Kleene’s strong three-valued ma-

trix II. Only one designated value. Journal of Applied Non-Classical Logics.

[20] Routley, R. Meyer, R. K., Plumwood, V., Brady R. T. (1982). Relevant

Logics and their Rivals, vol. 1. Atascadero, CA: Ridgeview Publishing Co.

[21] Sano, K., Omori, H. (2014). An expansion of first-order

Belnap—Dunn logic. Logic Journal of the IGPL, 22(3), 458-481.

https://doi.org/10.1093/jigpal/jzt044.

[22] Thomas, N. (2013). LP=: Extending LP with a strong conditional oper-

ator. Cornell University ArXiv.Org - Eprint ArXiv:1304.6467. Available at

https://arxiv.org/abs/1304.6467v1.

[23] Tomova, N. (2010). Implicative extensions of regular Kleene logics. Logical

Investigations, 16. M.-SPb: C.G.I. 233-258.

[24] Tomova, N. (2012). A Lattice of implicative extensions of regular Kleene’s

logics. Reports on Mathematical Logic, 47, 173-182. https://doi.org/

10.4467/20842589RM.12.008.0689.

[25] Tomova N. (2013). Natural three-valued logics and classical logic. Logical

Investigations, 19 (Special Issue). M. Spb.: C.G.I., 344-352.

[26] Wójcicki, R. (1984). Lectures on Propositional Calculi. Pub. House of the

Polish Academy of Sciences.

26




