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Abstract

“Weak relevant model structures” (wr-ms) are defined on “weak rele-

vant matrices” by generalizing Brady’s model structureMCL built upon

Meyer’s Crystal matrix CL. It is shown how to falsify in any wr-ms the

Generalized Modus Ponens axiom and similar schemes used to derive

Curry’s Paradox. In the last section of the paper we discuss how to ex-

tend this method of falsification to more general schemes that could also

be used in deriving Curry’s Paradox.

Keywords : Curry’s Paradox; Depth Relevance; Generalized Modus

Ponens axiom; Generalized Contraction rule; weak relevant model struc-

tures; relevant logic.

1 Introduction

Consider the Comprehension Axiom in the form

CA. ∃∀( ∈  ↔ ) ( is not free in )

In [10] it is shown that in any logic S closed by Modus Ponens (MP), Elimi-

nation of the biconditional (E↔), uniform substitution of propositional variables
and the Contraction Law W,

W. [→ (→ )]→ (→ )

CA trivializes S. We can proceed as follows:

1.  ∈ ↔ ( ∈ → ) By CA

2.  ∈ → ( ∈ → ) E↔, 1
3. ( ∈ → )→  ∈  E↔, 1
4. [ ∈ → ( ∈ → )]→ ( ∈ → ) W

5.  ∈ →  MP, 2, 4

6.  ∈  MP, 3, 5

7.  MP, 5, 6

But  is arbitrary. So, S is trivial.
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The “depth relevance condition” (drc) is introduced in [5]. The drc is moti-

vated in the referred paper as a necessary condition, stated in syntactic terms,

for some paraconsistent logics rejecting the Contraction Law W used in deriving

Curry’s Paradox as it has been shown above.

The aim of this paper is to show, leaning upon Brady’s work [5], how to

block off in a general way some theses and rules akin to the Contraction Law

W, among which the Generalized Modus Ponens axiom defined below is to be

found.

Firstly, we shall precisely define the drc. We begin by noting the following:

Remark 1.1 (Languages and logics) We shall consider logics formulated in

the Hilbert-style form defined on propositional languages with a set of denumer-

able (propositional) variables and some (or all) of the connectives → (condi-

tional), Ã (deep relevant conditional), ∧ (conjunction), ∨ (disjunction) and ¬
(negation), the biconditionals ↔ and ! being defined in the customary way.

The set of wff is also defined in the usual way; , ,  (possibly with subscripts

0 1  ), etc., are metalinguistic variables.

Now, as it is known, the following is, according to Anderson and Belnap, a

necessary property of any relevant logic S (see [1]).

Definition 1.2 (Variable-sharing property –vsp) If →  is a theorem

of S, then  and  share at least a propositional variable.

Then, in [5] Brady strengthens the vsp by introducing the “depth relevant

condition”. In order to define it, it is first convenient to define the notion of

“depth of a subformula within a formula" (see [5] and [8], §11).

Definition 1.3 (Depth of a subformula within a formula) Let  be a wff

and  a subformula of . Then, “the depth of  in ” (in symbols, [])
is inductively defined as follows:

1.  is . Then, [] = 0.

2.  is ¬. Then, [] =  if [¬] = .

3.  is  ∧  ( ∨ ). Then, [] = [] =  if [ ∧ ] = 

([ ∨] = ).

4.  is  →  ( Ã ). Then, [] = [] = +1 if [ → ] =
 ([ Ã ] = ).

So, the depth of a particular occurrence of  in  is the number of nested

‘→’‘s (‘Ã’‘s) between this particular occurrence of  and the whole formula .

The “depth relevance condition” is then defined as follows:

Definition 1.4 (Depth relevance condition –drc) Let S be a propositional

logic with connectives →, ∧, ∨, ¬ (cf. Remark 1.1). S has the depth relevance
condition (or S is a deep relevant logic) if in all theorems of S of the form

 →  there is at least a propositional variable  common to  and  such

that [] = [].
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Remark 1.5 (Rewriting →) If a logic S has the drc, we can write  Ã 

instead of →  for each theorem of S of the form → .

Example 1.6 (Depth. Depth relevance) Consider the following wff

(1) (→ ¬)→ [(¬ ∧ )→ [( ∨ )→ ]]

(2) (→ )→ [[→ ( → )]→ (→ )]

(3) [→ (→ )]→ (→ )

We have: (a) the variables , ,  and  have depth 2 in (1); the variables
,  and  have depth 3 in (1); (b) antecedent and consequent of (3) have the
underlined  at the same depth (notice that (3) is an instance of the Contraction

Law W); (c) antecedent and consequent of (2) do not share variables at the same

depth.

Consider now the following rule and thesis:

Contraction rule (rW). → (→ )⇒ → 

Modus Ponens axiom (MPa). [ ∧ (→ )]→ 

It is well-known that either rW or MPa suffice to derive Curry’s Paradox in

naive set theories built upon weak positive logics (see, e.g., [15] and references

therein). Moreover, as it is remarked in [5] (pp. 72-73), Curry’s Paradox is still

derivable, and under the same conditions, from the following generalizations of

rW and MPa (we maintain Brady’s labels to refer to them):

(*). 
+1→  ⇒ 

→ 

(**). [ ∧ ( → )]
→ 

where 
→  abbreviates  → [ → ( → ( → ))] with  occurrencies

of .

We shall discuss rW, MPa, (*) and (**) below.

In the last two pages of his paper, Brady investigates to what extent Curry’s

Paradox can be avoided by logics satisfying the drc. In order to do this, he

labels a Curry-type paradox “basic” if it is derived by using rW or MPa. Then,

he notes that basic Curry-type paradoxes are avoided in logics with the drc

containing Routley and Meyer’s basic logic B (cf. [15], Chap. 8; see Appx.

1) as it is implied by the two following facts: (a) in instances of MPa such as

[ ∧ ( → )] → , antecedent and consequent do not share variables at the

same depth; and, on the other hand, (b) MPa is derivable if rW is added to B

(actually, MPa and rW are equivalent w.r.t. a much weaker system Σ–see the
definition of Σ in Appx. 1, and the proof of the fact just mentioned in Appx.
2). Consequently, any logic with the drc and containing B (actually, Σ) lacks W
no matter the fact that, as it was shown in Example 1.6, in any instance of W

antecedent and consequent share at least a propositional variable at the same

depth.
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Let us briefly discuss this elimination of the basic Curry-type paradoxes.

As just pointed out, this elimination is possible w.r.t. logics containing the

system Σ. But there are strong logics in which rW holds and that lack MPa

or even (**). For illustration purposes, we have chosen a simple example, the

3-valued logic ΣM5 axiomatized in Appx. 3. The logic ΣM5 and a wealth of
its subsystems are strong logics. But, on the other hand, ΣM5 does not include
B (actually, it does not include Σ). And, regarding rW and (**), ΣM5 has
the former but lacks the latter for any  ≥ 1. Therefore, it is not, in principle,
impossible for there to be a sublogic of ΣM5 with the drc and with rW as a rule.

Or, in other words, in principle, it is not impossible that there is a sublogic of

ΣM5 with the drc in which basic Curry-type paradoxes are derivable. It then
follows from the preceding considerations that a general method is needed for

eliminating these basic paradoxes; a method not dependent on some basic logic,

no matter how weak it is. Let us examine this question by considering the

general schemes (*) and (**).

To begin with, notice that for any , antecedent and consequent of (**)

share variables at the same depth. For example, for  = 2, we have:

[ ∧ [→ (→ )]]→ {[ ∧ [→ (→ )]]→ }
where shared variables between antecedent and consequent at the same depth

are underlined/double-underlined. Regarding this question Brady notes the

following ([5], p. 73): “It is an open problem whether or not any of the rules

(*), for  ≥ 2, or any of the formula schemes (**), for  ≥ 2, are derivable in
a logic containing the system B satisfying the depth relevance condition. Note

that, since (**) is derivable from (*), it suffices to reject (**) in order to

reject (*).” (In Appx. 2, (**) is derived from (*), given B+, since Brady

does not include the proof of this fact in his paper –actually, it is proved that

(*) and (**) are equivalent w.r.t. B+).

The aim of this paper is to define a general class of logics with the drc

lacking (**) and akin theses. This general class comprises a wide spectrum

of logics including weak ones not containing First Degree Entailment Logic FD

(see Appx. 1) as well as strong logics not contained in R-Mingle (see Appx. 1)

or even in classical propositional logic (see Appx. 3). It is to be remarked that

all (propositional) deep relevant logics defined by Brady in his works (cf. [8] or

[9] and references therein. See Appx. 1) are among the logics belonging to this

class. Let us now briefly explain how we shall proceed.

Firstly, we shall remark a couple of notes about Brady’s strategy. The aim of

[5] is to define the main logic (or logics) with the drc. Brady’s strategy consists

in restricting with the drc the class of logics with the vsp verified by Meyer’s

Crystal matrix CL (see Appx. 3 where CL is displayed). Then, he chooses the

logic DR (presumably, an abbreviation for ‘Depth Relevance’) as the preferred

one among those defined from CL as indicated (see Appx. 1 for a definition of

DR and other relevant logics. We remark that the logic DJ is Brady’s preferred

logic in subsequent works. See, e.g., [8] or [9]).

On the other hand, in [13], Brady’s strategy is generalized by showing how

to define a class of deep relevant logics from each weak relevant matrix. “Weak
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relevant matrices” are defined in [12] and are characterized as matrices verifying

only logics with the vsp. (In the referred paper [13] it is proved that there are

deep relevant logics not included in R-Mingle –see Appx. 1 and Appx. 3 on

this question).

By using the model structures defined in [13] (which are a generalization of

that defined in [5], recalled below in Example 2.13) we shall state a very general

sufficient condition for a logic to simultaneously have the drc and lack (**)

and schemes of a similar structure. In this way, this paper aims at providing

additional support to that provided in [5] for the dcr as a non “ad hoc” condition

for paraconsistent logics founding natural naive set theory.

The structure of the paper is as follows. In §2, the basic notions of a “weak

relevant matrix” and a “weak relevant model structure” (wr-ms, for short) are

defined. In §3, it is proved that wr-ms only verify logics with the drc. In §4,

it is proved that (**) is falsified in any wr-ms and so, that it is unprovable in

any deep relevant logic verified by a wr-ms. Actually, we shall prove that gen-

eral schemes of a certain structure are falsified by wr-ms, and that (**) is an

instance of one of these general schemes. Finally, in §5, we briefly discuss a plan

for further work by remarking a couple of notes on how wr-ms could block off

other theses or schemes from which Curry’s Paradox could be derived. We have

added three appendices. The first one features all the logics mentioned through-

out the paper. The second one displays the proof that MPa (respectively, (**))

is equivalent to rW (respectively, (*)) given the logic Σ (respectively, B+). It
follows then that any wr-ms verifying Routley and Meyer’s basic positive logic

B+ falsifies the Generalized Contraction rule (*). In the third one, some logi-

cal matrices are recorded. Each one of these matrices verify (cf. §2) some main

logic or class of logics in the paper. Neither the results of [5] nor these of [13]

are presupposed. We have maintained, as much as possible, Brady’s notation

and terminology, especially when defining wr-model structures.

2 Preliminary definitions

In this section the notions of a “weak relevant matrix” and “weak relevant model

structure” defined in [13] are recalled. But the more basic and well-known notion

of a “logical matrix” is first revisited, for definiteness (cf. Remark 1.1).

Definition 2.1 (Logical matrices) A logical matrix M is a structure (

→ ∧ ∨ ¬) where

1.  is a set.

2.  and  are non-empty subsets of  such that  ∪ =  and  ∩ = ∅.
3. → ∧ and ∨ are binary functions (distinct from each other) on  and

¬ is a unary function on .

It is said that  is the set of elements of M;  is the set of designated

elements, and  , the set of non-designated elements. The functions → ∧ ∨
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and ¬ interpret in M the conditional, conjunction, disjunction and negation,

respectively. In some cases one or more of these functions may not be defined.

Remark 2.2 (On the set  ) The set  has been remarked in Definition 2.1

only because it eases the definition of “weak relevant matrices” and “weak rele-

vant model structures”.

In addition to Definition 2.1 we set (cf. Remark 1.1):

Definition 2.3 (Verification, Falsification) Let M be a logical matrix and

 a wff.

1. M verifies  iff for any assignment, , of elements of  to the propo-

sitional variables of , () ∈  . M falsifies  iff M does not verify

.

2. If 1   ⇒  is a rule of derivation of a logic S, M verifies 1  ⇒
 iff for any assignment, , of elements of to the variables of 1 

, if (1) ∈   () ∈  , then () ∈  . M falsifies 1  ⇒
 iff M does not verify it.

3. Let S be a propositional logic. M verifies S iff M verifies all axioms and

rules of derivation of S.

Remark 2.4 (Interpretation of formulas of the form Ã ) Formulas

of the form Ã  are not interpreted by logical matrices but by model structures

defined on weak relevant matrices (see Definition 2.9 below).

Next, “weak relevant matrices” are defined.

Definition 2.5 (Weak relevant matrices) Let M be a logical matrix in which

 ∈  and 1   1   are elements of . And let us designate by 1

and 2 the subsets of  {1  } and {1  }, respectively. The subsets
1 and 2 are disjoint and the members of 1 as well as those elements in 2

are possibly (but not necessarily) distinct from each other. Finally, the following

conditions are fulfilled:

1. ∀∀ ∈ 1 ∧( ) & ∨( ) & →( ) & ¬() ∈ 1

2. ∀∀ ∈ 2 ∧( ) & ∨( ) & →( ) & ¬() ∈ 2

3. ∀ ∈ 1∀ ∈ 2 →( ) = 

4. ∀ ∈ 1 ∪2 →(  ) = 

Then, it is said that M is a weak relevant matrix (wr-matrix, for short).
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Remark 2.6 (On wr-matrices) The notion of a wr-matrix is introduced in

[12] where “strong relevant matrices” are also defined. On the other hand,

the class of wr-matrices in Definition 2.5 is a restriction of that in [12] where

condition 4 is not included. Regarding this restriction, notice that members of

1 ∪2 have to be designated if the “self-identity” axiom →  is verified. If

this is the case, then condition 4 necessarily follows if Modus Ponens is in its

turn going to be validated.

Example 2.7 (Some wr-matrices) The well-known tables of Belnap in [3]

(used again in [1] §22.1.3) form a wr-matrix where 1 = {−2+2}2 =
{−1+1} and  = −3. Meyer’s matrix CL (see Appx. 3) is a wr-matrix

with 1 = {2}2 = {3} and  = 0. Other wr-matrices used in this paper are
displayed in Appx. 3.

Concerning wr-matrices we prove the following basic proposition (cf. Propo-

sition 3.4 in [12]).

Proposition 2.8 (Logics verified by wr-matrices have the vsp) Let M be

a wr-matrix and S a logic verified by it. Then, S has the vsp.

Proof. Let  →  be a wff in which  and  do not share propositional

variables, and , , some arbitrary elements of 1 and 2, respectively. Define

an assignment, , such that for each propositional variable  in  (respectively,

in ), () =  (respectively, () = ). Notice that this is a consistent

assignment because  and  do not share propositional variables. By induction

on the length of  and  and conditions 1, 2 in Definition 2.5, it follows that

() =  and () = . Then, by condition 3 in the same definition,

( → ) =  . Consequently, if M verifies S, then in each theorem of the

form  → ,  and  share at least a propositional variable. That is, S has

the vsp.

Next, “wr-model structures” and “valuations on wr-model structures” are

defined (we follow Brady in [5]).

Definition 2.9 (wr-model structures) Let M be a wr-matrix. A wr-model

structure (wr-ms, for short)MM is the set {MM1 MM} where MM1

MM are all identical matrices to the wr-matrix M.

Definition 2.10 (Valuations and interpretations in wr-ms) Let MM be

a wr-model structure. By  it is designated a function from the set of proposi-

tional variables to  in  (0 ≤  ≤ ). Then, a valuation  on MM is a set

of functions  for each  ∈ {0 1    }. Given a valuation , each  is

extended to an interpretation  of all wff according to the following conditions:
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for all propositional variables  and wff , ,

(i). () = ()

(ii). (¬) = ¬()
(iii). ( ∧) = () ∧ ()
(iv). ( ∨) = () ∨ ()
(v). (→ ) = ()→ ()

where (i)-(v) are calculated according to the wr-matrix M. In addition, formulas

of the form Ã  are evaluated as follows ( ∈  . Cf. Definition 2.5):

(via).  = 0 : (Ã ) = 

(vib). 0     : (Ã ) = −1(→ )

(vic).  =  : (Ã ) ∈  iff (→ ) ∈  for all (0 ≤  ≤ )

Then the interpretation  on MM extending  is the set of functions  for

each  ∈ {0 1    }.
Next, validity is defined as follows:

Definition 2.11 (Validity in a wr-ms) LetMM be a wr-ms and 1  ,

wff.  is valid in MM (in symbols ²MM
) iff () ∈  for all valua-

tions . And the rule 1   ⇒  preserves MM-validity iff, if (1) ∈
  () ∈  , then () ∈  , for all valuations .

This definition is extended to cover the case of propositional logics in the

following.

Definition 2.12 (Logics verified by a wr-ms) Let MM be a wr-ms and S

a logic (cf. Remark 1.1). MM verifies S iff all axioms of S are MM-valid and

all the rules of S preserveMM -validity.

Example 2.13 (The wr-ms MCL) The wr-msMCL defined by Brady in [5]

is the set {MM1 M M} where MM1 MM are all identical to

CL (cf. Example 2.7 and Appx. 3), valuations are defined w.r.t. the set  of

CL, and (i)-(v) are calculated according to the CL-functions as defined in Appx.

3 (0( Ã ) = 2 for all wff , ). Then, all axioms of DR are MCL-valid

and all rules of DR preserve MCL-validity (cf. Appx. 1. See [5]). Below,

it is proved (Theorem 3.3) that any logic verified by a wr-ms is deep relevant.

Therefore, DR is a deep relevant logic. On the other hand, it might be interesting

to remark (although we cannot pause here to discuss the matter) that the wr-ms

MM0 defined on Belnap’s wr-matrix M0 recalled in Example 2.7 determines a

class of deep relevant logics different fromMCL . The reason is that the “strong

replacement principles”, i.e.

{(→ ) ∧ [( ∧)→ ]}→ [( ∧ )→ ]

{[→ ( ∨)] ∧ ( → )}→ [→ ( ∨)]
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and the “strong distribution principle”, i.e.,

{[( ∧)→ ] ∧ [→ ( ∨ )]}→ (→ )

verified by CL are falsified by M0. We now have a proof (although it cannot be

displayed here) that these axioms can be added to DR without it losing the drc

(see [15], p. 345 on these priniciples).

In the next section it is proved that wr-ms only verify deep relevant logics.

3 Wr-model structures and the depth relevance

condition

We begin by defining a useful notion, “degree of a formula” (in symbols, ()
for a wff ), inductively as follows (cf. [5] or [8], §11.1).

Definition 3.1 (Degree of formulas)

1. If  is a propositional variable, then () = 0.

2. If  is of the form ¬ and () = , then (¬) = .

3. If  is of the form  ∨ ( ∧) and () =  and () = , then

() = {}.
4. If  is of the form  →  ( Ã ) and () =  and () = ,

then () = {}+ 1.

So, the degree of a formula  is the maximum number of nested ‘→’‘s (‘Ã’‘s)
in .

Next, we shall prove a lemma which will be useful when proving that wr-ms

only verify deep relevant logics (see [5], [13]). We shall abbreviate reference to

Definition 2.5 and Definition 2.10 by DF.2.5 and DF.2.10, respectively, in this

lemma and the theorems that follow it.

Lemma 3.2 ( and  with no variables at the same depth in Ã )

Let Ã  be a wff in which  and  do not share variables at the same depth.

And let ( Ã ) = . Then, () ≤ − 1, () ≤  − 1 (and either
() =  − 1 or () =  − 1). On the other hand, let MM be a wr-ms.

Then, there is an interpretation  onMM such that

1. For each subformula  of  at depth , −−1() ∈ 1.

2. For each subformula  of  at depth , −−1() ∈ 2.

Proof. Let  ∈ ,  ∈ 1 and  ∈ 2 and define the valuation  as follows:

1. −−1() =  for each variable  in  at depth .
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2. −−1() =  for each variable  in  at depth .

3. () =  if  ≥  or  =  −  − 1 but  does not occur at depth 

neither in  nor in .

We remark that for each  ∈ {0 1    },  has been defined. Now,
extend  to  according to clauses (i)-(vi) in DF.2.10 (notice that  is a consistent

assignment since  and  do not share variables at the same depth). We prove

case (1) (the proof of case (2) is similar). The proof is by induction on the length

of . If  is a propositional variable, then (1) follows by definition of  and

condition (i) in DF.2.10. And if  is a formula of the forms ¬, ∧, ∨ or
 →  the proof is immediate by conditions (ii)-(v) in DF.2.10 (cf. DF.2.5). So,

suppose that  is of the form Ã . By hypothesis of induction, −−2() ∈
1 and −−2() ∈ 1. That is, −−2( → ) ∈ 1 by condition (v) in

DF.2.10 (cf. DF.2.5). So, by clause (vib) in DF.2.10, −−1(Ã ) ∈ 1, as

was to be proved.

Leaning on the lemma just proved we can show that wr-ms only verify logics

with the drc (see [5], [13]).

Theorem 3.3 (wr-ms and the drc) Let MM be a wr-ms and suppose ²MM

Ã . Then,  and  share a propositional variable at the same depth.

Proof. Suppose that Ã  is a wff in which  and  do not share a propo-

sitional variable at the same depth, and let ( Ã ) = . As  (respec-

tively, ) is a subformula of itself at depth 0 in  (respectively, in ), we have

−1() ∈ 1 and −1() ∈ 2 by Lemma 3.2. So, −1( → ) =  by

condition (v) in DF.2.10 (cf. DF.2.5), whence by condition (vic) in DF.2.10,

( Ã ) ∈  . Consequently, if  Ã  is valid in the wr-ms MM, then 

and  share at least a propositional variable at the same depth.

An immediate corollary is:

Corollary 3.4 (wr-ms and deep relevant logics) LetMM be a wr-ms and

S a logic verified by it. Then, S has the drc.

Proof. Immediate by Theorem 3.3 and Definition 2.12.

4 Unprovability of (**) in (deep relevant) log-
ics verified by wr-ms

Consider t1-t10 below. Although each one of them can appear in logics with the

vsp, these are theses containing instances in which antecedent and consequent

do not share a propositional variable at the same depth (but for t6 and t7 all

these formulas are theorems of relevant logic R see [1] and Appx. 1. Concerning
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t6 and t7, see [12]).

t1. (→ )→ [( → )→ (→ )]

t2. ( → )→ [(→ )→ (→ )]

t3. [(→ )→ ]→ 

t4. [ ∧ (→ )]→ 

t5. → [(→ )→ ]

t6. → (→ )

t7. [(→ )→ ]→ 

t8. (→ ¬)→ ¬
t9. [(→ ) ∧ ¬]→ ¬
t10. [(→ ) ∧ (→ ¬)]→ ¬

Now, Theorem 3.3 guarantees that t1-t10, and formulas similar to them, are

ruled out by wr-ms. Let us consider an example.

Example 4.1 (t3 is falsified in the wr-ms CL) We shall use the matrix CL

(see Appx. 3) and the wr-msMCL (see Example 2.13). Now, CL verifies t3 (it

verifies relevant logic R), but the following instance of t3, when read with Ã,
i.e.,

t30. [(Ã )Ã ]Ã 

is notMCL-valid, as it is shown below.

Firstly, notice the following facts: (t30) = 3, [ ( Ã ) Ã ] = 2,
[ ] = 0. Next, define the valuation  on MCL as follows (cf. the proof of

Lemma 3.2):

1. 3−2−1() = 2; 3−2−1() = 0 for any propositional variable  distinct

from .

2. 3−1−1() = 2; 3−1−1() = 0 for any propositional variable  distinct

from .

3. 3−0−1() = 3; 3−0−1() = 0 for any propositional variable  distinct

from .

4. () = 0 for any propositional variable  when  ≥ 3.

Now, notice that 0, 1 and 2 are defined in 1, 2 and 3, respectively; and

that  for  ∈ {3    } is defined in 4. (In 1-4 any element in  instead

of 0 will suffice). Next:

5. Extend  to an interpretation  according to clauses (i)-(vi) in Definition

2.10.
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Then, we show that t30 is falsified by . We have 0( → ) = 2 (Matrix
CL), 1(Ã ) = 2 (clause (vib), DF.2.10), 1[(Ã )→ ] = 2 (Matrix CL),
2[(Ã )Ã ] = 2 (clause (vib), DF.2.10), 2[[(Ã )Ã ]→ ] = 0 (Matrix
CL) and, finally, (t3

0) ∈  (clause (vic), DF.2.10). Therefore, t30 is not valid
inMCL .

So far, so good. But consider t11-t14 below:

t11. [→ (→ )]→ (→ )

t12. [→ ( → )]→ [( ∧)→ ]

t13. (→ )→ [→ (→ )]

t14. (→ )→ [ → (→ )]

Antecedent and consequent of any instance of each one of these theses share

at least one propositional variable at the same depth. Take, for example, the

following instances (shared variables at the same depth are underlined; t11 is,

of course, the Contraction Law W):

t110. [→ (→ )]→ (→ )

t120. [→ ( → )]→ [( ∧ )→ ]

t130. (→ )→ [→ (→ )]

t140. (→ )→ [ → (→ )]

Despite this sharing of variables at the same depth, the problem with t11-

t14 is that they break the drc when added to weak positive logics with this

property. Actually, as pointed out in §1, t11 (or t12) causes this effect if added

to such a weak logic as Σ (see Appx. 2). And, on the other hand, t6 above
is derivable in any logic with t13 or t14 and the “self-identity” axiom  → .

But, nevertheless, t11-t14 and similar theses are not falsified by Theorem 3.3

that only falsify wff of the form  Ã  when  and  do not share variables

at the same depth. In this sense, as remarked in §1, with the following instance

of (**),

t15. [ ∧ [→ (→ )]]→ {[ ∧ [→ (→ )]]→ }
we face the same problem in the case of (*) or (**).

We shall prove, however, that formulas such as t11-t14 and (**) (for any

 ≥ 1) are valid in no wr-ms. Actually, we shall prove a more general result.
Consider the following scheme henceforward labelled t16

t16. 1 Ã [2 Ã (Ã ( Ã ))]

where 1    are wff, and no variable  in  such that [ t16] =  also

appears in some  (1 ≤  ≤ ) at depth  in t16. We shall prove that t16 is

valid in no wr-msMM. Then, it will be proved that (**), for any  ≥ 1, is an
instance of t16.
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Now, notice that t11-t15 are instances of t16. Also remark that the first

occurrence of , a sentential variable in , is at depth 2 in t130 whereas the
second one is at depth 3 in t130. Finally, notice that it may be the case that 1
and 2 Ã [3 Ã (Ã (Ã ))] share one or more variables at the same
depth as it actually happens in each one of t11-t15.

After these preliminaries it is time to formulate and prove the following

theorem.

Theorem 4.2 (Non-validity of t16) LetMM be a wr-ms, and let

t16. 1 Ã [2 Ã (Ã ( Ã ))]

be stated as above. That is, for each variable  in  such that [ t16] = ,

either (a)  appears in no  (1 ≤  ≤ ) or else (b)  appears in one or more
(or even all) of 1 2   but never having depth  at t16. Then, t16 is not

valid inMM .

Proof. Let  ∈ ,  ∈ 1,  ∈ 2 and (t16) = . Then, (1) ≤
 − 1, (2 Ã [3 Ã ( Ã ( Ã ))]) ≤  − 1; (2) ≤  − 2,
(3 Ã [4 Ã (Ã ( Ã ))]) ≤ − 2. In sum, for each  (1 ≤  ≤ ),
() ≤ −  and () ≤ −. Now, we define the following valuation :

1. −−() =  for each variable  at depth  in each  (1 ≤  ≤ ).

2. −−() =  for each variable  at depth  in .

3. () =  if  ≥  or  =  − −  (1 ≤  ≤ ) but  appears at depth
 neither in  (1 ≤  ≤ ) nor in .

We remark that  is consistent since no variable in  at depth  in t16

appears in some  (1 ≤  ≤ ) with [, t16] = . Then, extend  to an

interpretation  onMM according to clauses (i)-(vi) in Definition 2.10.

Now, similarly as in the proof of Theorem 3.3, by induction on the length of

 it is proved:

1. For each subformula  of  (1 ≤  ≤ ) at depth , −−() ∈ 1.

2. For each subformula  of  at depth , −−() ∈ 2.

As each  (1 ≤  ≤ ) (respectively, ) is a subformula of itself at depth
0 in  (respectively, in ), we have:

3. −() ∈ 1 (1 ≤  ≤ )

4. −() ∈ 2.

By condition 3 in DF.2.5 and clause (v) in DF.2.10, we have −( →
) =  ; and by clause (vib) in DF.2.10, −(−1)(Ã ) =  . By condition

4 in DF.2.5 and clause (v) in DF.2.10, we have −(−1)(−1 → ( Ã )) =
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 , whence, by clause (vib) in DF.2.10, −(−2)(−1 Ã ( Ã )) =  . By

repeating the argumentation, −(−)(−(−1) Ã (Ã ( Ã ))) =  ,

whence (1 Ã ( Ã ( Ã ))) ∈  by clause (vic) in DF.2.10. There-

fore, any formula of the form t16 (fulfilling the conditions stated in Theorem

4.2) is valid in no wr-msMM.

Now, Theorem 4.2 can be reformulated in contraposed form as follows. Con-

sider the wff X,

X. 1 Ã (2 Ã (Ã (−1 Ã ))

where 1  are wff, and letMM be any wr-ms such that ²MM
X. Then, for

some propositional variable  in  such that [, X] = , there is some 

(1 ≤  ≤ − 1) in which  appears at depth  in X.

Next, it will be shown that (**), for any  ≥ 1, is a formula of the form
t16 fulfilling the conditions stated in Theorem 4.2, and it is therefore valid in

no wr-msMM.

Corollary 4.3 (Non-validity of (**) in wr-ms) LetMM be a wr-ms. The

scheme

(**). [ ∧ ( Ã )]
Ã 

is not generally valid inMM .

Proof. We show that there are particular instances of (**) which are of the

form of t16. It would suffice to show that

(**). [ ∧ ( Ã )]
Ã 

(where  and  are distinct propositional variables) is one of them. But we shall

prove a more general result.

Consider the scheme

t160. 1 Ã [2 Ã (Ã ( Ã ))]

where each  (1 ≤  ≤ ) is of the form  ∧ ( Ã ),  and  do not

share propositional variables and () = 0 or () = 1. Now, let us refer
by  to the formula  appearing in  (1 ≤  ≤ ) and by 0 to the last

occurrence of  in t160. Then, for each  (1 ≤  ≤ ), [, t16
0] = ; and for

each , [ ] = , whence [, t16
0] = + . On the other hand, [0

t160] = . Therefore, no variable  in 0 with [ t16
0] =  appears in some 

(1 ≤  ≤ ) with the same depth  in t160. Consequently, Theorem 4.2 applies,

and so, t160 is valid in no wr-msMM. Now, it is clear that t16
0 is of the form

(**). So, the scheme (**) is valid in no wr-msMM.

An instance of t160 is for example (**)0 noted above; another is

(**)00. [ ∧ ( Ã )]
Ã 

where  does not appear in  and () = 0 or () = 1 (that is, there is at
most only one occurrence of → (Ã) in ). It is to be noted that this condition
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(i.e., () = 0 or () = 1) is essential in order to falsify t160. For suppose
() =   1. If  is a variable appearing in , then [] =  where

1 ≤  ≤ . Now,  can appear in some  with [ t160] = . Consider, for

example, (**)00 with  = 2 and  = ( → )→ . That is,

(**)200. { ∧ [Ã [Ã [( Ã )Ã ]]]}Ã
{{ ∧ [Ã [Ã [( Ã )Ã ]]]}Ã [( Ã )Ã ]}

with the underlined  at depth 4 in (**)200: 1 and 0 share this variable  at

the same depth. (Nevertheless, notice that (**)200 is valid in no wr-ms: as no
occurrence of  save for the last one is at depth 3, (**)200 can be read as an
instance of t16.)

We end this section with following corollary.

Corollary 4.4 (Non-validity of (*) in wr-ms verifying B+) LetMM be

a wr-ms verifying B+. The rule

(*). 
+1Ã  ⇒ 

Ã 

does not preserveMM-validity.

Proof. As shown in Appx. 2, given the logic B+, (**) is derivable from (*).

So, Corollary 4.4 follows immediately by Corollary 4.3 and the fact just pointed

out.

To end this section, let us remark that it follows from the theorem and

the corollaries just proved that t16, and so, (**) are unprovable in any deep

relevant logic verified by a wr-ms; also, that (*) is unprovable in any deep

relevant logic verified by a wr-ms verifying B+.

5 Conclusions and brief comments on further

work

As we have seen, Theorem 4.2 rules out some schemes that would trivialize

the Comprehension Axiom CA (see §1) when added to weak positive logics,

no matter the fact that antecedent and consequent in the said schemes share

variables at the same depth. Examples of these formulas and schemes are t11-

t16, (*) and (**). And the list can be easily extended, and with unexpected

theses. Consider, for example, the following wffs

t17. [(→ )→ ]→ [(→ )→ ]

t18. [( → )→ ]→ [(→ )→ ]

t19. [( ∧)→ ]→ [(→ ( → )]

where metalinguistic variables that can share propositional variables (when sub-

stituted by particular wffs) at the same depth are underlined. Theses t17-t19
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are invalidated by Theorem 4.2, but they can be theorems of logics with the

vsp (see Appx. 3) although t18 is related to Peirce’s Law (t7 above in §4) and,

most of all, “Positive Paradox” (→ ( → )) is immediate if t19 is added to
FD+ (see Appx. 1; on the other hand, t17 is a theorem of E –see Appx. 1).

There are other well-known formulas that being no less rejectable (from

the depth relevance perspective) than, for example, t17-t19, are not however

invalidated by Theorem 4.2. Some of them are listed below with shared variables

at the same depth underlined as above:

t20. [→ ( → )]→ [ → (→ )]

t21. [(→ )→ (→ )]→ [ → (→ )]

t22. [(→ )→ (→ )]→ [→ ( → )]

t23. [(→ )→ )]→ ( → )

t24. [( ∨ ) ∧ ( → )]→ [(→ )→ ]

Although Theorem 4.2 is not sufficient to rule out these formulas, we can

show that t20-t24 (and so, the corresponding schemes) and wffs of similar struc-

ture can be invalidated in a similar way as t16 was invalidated. Consider the

following:

Theorem 5.1 (Non-validity of t25) LetMM be a wr-ms, and let

t25. 1 Ã [2 Ã (Ã ( Ã ))]

be a wff where there is some  (1 ≤  ≤ ) such that for each variable  in 

with [ t25] = , we have

1.  appears neither in  nor in  [ ∈ {1 2  − 1  + 1 }]
2.  appears in some (or all of) 1 2  −1 +1   , but never

having depth  at t25.

Then, t25 is not valid inMM .

Proof. (1)  = 1. Then, the proof is by Theorem 3.3. (2)   1. We prove
the case 2 ≤    (if  = , the proof is similar). This proof is like to that of

Theorem 4.2. Let  ∈ ,  ∈ 1,  ∈ 2 and (t25) = . Then, define the

following valuation :

1. −−() =  for each variable  at depth  in .

2. −−() =  for each variable  at depth  in each  [ ∈ {1 2 −
1  + 1 }].

3. −−() =  for each variable  at depth  in .

4. () =  if  ≥  or  = −− ( ∈ {1 2  }) but  does not appear
at depth  neither in  nor in  ( ∈ {1 2  }).
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Next extend  to an interpretation  onMM according to clauses (i)-(vi) in

Definition 2.10.

Now, by induction on the length of , it is proved (cf. Theorem 3.3 and

Theorem 4.2):

1. For each subformula  of  at depth , −−() = .

2. For each subformula  of  ( ∈ {1 2  − 1 +1 }) at depth ,
−−() = .

3. For each subformula  of  at depth , −−() = .

Next, as each  (1 ≤  ≤ ) (respectively, ) is a subformula of itself at
depth 0 in  (respectively in ), we have:

4. −() ∈ 1.

5. −() ∈ 2 ( ∈ {1 2   − 1  + 1  ).
6. −() ∈ 2.

Then, we can proceed as follows. By (5) and (6), we have −() ∈ 2

and −() ∈ 2, whence, by condition 2 (DF.2.5), −( → ) ∈ 2, and,

by condition (vib) (DF.2.10), −(−1)( Ã ) ∈ 2. In this way, by repeat-

ing the argumentation, we get −(−(−))(+1 Ã (+2 Ã ( Ã ( Ã
)))) ∈ 2. Now, −(−(−))() ∈ 1. So, by condition 3 (DF.2.5),

−(−(−))( → (+1 Ã (+2 Ã ( Ã ( Ã ))))) =  , and then,

−(−(−(−1)))( Ã (+1 Ã (+2 Ã  Ã ( Ã )))) =  . On

the other hand, −(−(−(−1)))(−1) ∈ 2. So, by condition 4 (DF.2.5),

−(−(−(−1)))(−1 → ( Ã (+1 Ã ( Ã ( Ã ))))) =  and,

then, −(−(−(−2)))(−1 Ã ( Ã (+1 Ã ( Ã ( Ã ))))) =  .

In this way, we obtain, −(−(−(−)))(−(−1) Ã ( Ã (+1 Ã ( Ã
( Ã ))))) =  . That is, (1 Ã (2 Ã ( Ã ( Ã )))) =  ,

whence by condition (vib) (DF.2.10), (16
0) ∈  , as was to be proved.

Theorem 5.2 can be reformulated in contraposed form as follows. Let X be

the wff

X. 1 Ã (2 Ã (Ã (−1 Ã )))

where 1   are wff and letMM be any wr-ms such that ²MM
X. Then, for

some propositional variable  in each  (1 ≤  ≤ ) such that [] = 

there is some  ( ∈ {1 2  − 1 + 1  }) in which  appears at depth 

in X.

Now, notice that t20-t24 are falsified by Theorem 5.1 (one or more variables

not appearing at the same depth in the rest of the formula are underlined in
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each one of t200-t240):

t200. [Ã ( Ã )]Ã [ Ã (Ã )]

t210. [(Ã )Ã (Ã )]Ã [ Ã (Ã )]

t220. [(Ã )Ã (Ã )]Ã [Ã ( Ã )]

t230. [(Ã )Ã )]Ã ( Ã )

t240. [( ∨ ) ∧ ( Ã )]Ã [(Ã )Ã ]

But t16 and t25 do not exhaust, of course, the class of schemes whose ele-

ments would trivialize naive set theory built upon weak positive logics, far from

it. In [14], it is recorded “the class of implication formulas known to trivialize

(NC)” ([14], p. 435; ‘NC’ abbreviates ‘naive comprehension’). Let us examine

some of these general structures. Consider the set of schemes (see [14], §5)

Ψ = {

Π
=1

 →  :  ≥ 0 and  ∈ ∨Ψ or a tautology}

where


Π
=1

 →  is an abbreviation for 1 → [2 → ( → ( → ))],

∨Ψ = { → Ψ( )Ψ( ) → } and Ψ( ) is an arbitrary but fixed formula
containing no other propositional variables than  and . In [14] (Theorem 3), it

is shown that any wff in Ψ trivializes the naive set theory built upon any logic

closed under modus ponens and uniform substitution of propositional variables.

But, unfortunately, wff belonging to Ψ are not in general falsifiable by leaning

on Theorem 4.2 or on Theorem 5.1. Consider, for example, the case in which

 = 3 and  is of the form → Ψ( ), Ã (Ã ) in particular, that is

Ψ3. [Ã (Ã )]Ã
{[Ã (Ã )]Ã [[Ã (Ã )]Ã ]}

Let  be a subformula of Ψ3. By 

it is indicated that 


is the th

occurrence (from left to right) of  in Ψ3. Then, Ψ3 is not falsifiable by

Theorem 4.2 because

[
4
Ψ3] = [

1
Ψ3] = 3

And Ψ3 is not falsifiable by Theorem 5.1 because  Ã
1
( Ã ) and  Ã

2

(Ã ) on the one hand, and Ã
2
(Ã ) and Ã

3
(Ã ) on the other, share

variables at the same depth.

Nevertheless, we remark that Ψ3 is falsified in Brady’s wr-ms MCL (see

Example 2.13). Given that 
1
is the only variable at depth 2 in Ψ3, assign

this first occurrence of  the value 0 and all the remaining variables in Ψ3, no

matter the depth of each one of them, the value 3. Then, it is easy to show (cf.
Example 4.1) that Ψ3 has the value 0 for this assignment. Now, this result can
be generalized to wr-ms of a certain structure. And so (we think) is the case

with the rest of the general classes considered in [14], save for a few exceptions.

Therefore, we intend to define general schemes for falsifying the elements in

these general classes in adequate wr-ms.
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Appendix 1. The logics

The following axioms and rules are formulated in the propositional language

described in Remark 1.1. The positive First Degree Entailment Logic FD+ can

be formulated as follows (see [1], §15.2).

Axioms:

A1. Ã 

A2. ( ∧)Ã  / ( ∧)Ã 

A3. Ã ( ∨) /  Ã ( ∨)
A4. [ ∧ ( ∨ )]Ã [( ∧) ∨ ( ∧)]

Rules:

Transitivity (Trans). Ã  &  Ã  ⇒ Ã 

Conditioned intro. of conj. (CI ∧ ). Ã  & Ã  ⇒ Ã ( ∧ )
Elimination of disjunction (E ∨ ). Ã  &  Ã  ⇒ ( ∨)Ã 

The logic Σ is the result of adding the following rules to FD+:

Adjunction (Adj).  &  ⇒  ∧
Modus ponens (MP).  & Ã  ⇒ 

Suffixing (Suf). Ã  ⇒ ( Ã )Ã (Ã )

The logic First Degree Entailment FD is formulated (cf. [1], §15.2) by adding

the following axioms and rule to FD+:

A5. Ã ¬¬
A6. ¬¬Ã 

Contraposition (Con). Ã  ⇒ ¬ Ã ¬

Then, Routley and Meyer’s Basic Positive Logic B+ (cf. [15], Chap. 8] is

formulated when adding to FD+ (Trans, CI∧ and E∨ are not independent) the
rules MP, Suf and the following axioms and rule:

A7. [(Ã ) ∧ (Ã )]Ã [Ã ( ∧)]
A8. [(Ã ) ∧ ( Ã )]Ã [( ∨)Ã ]

Prefixing (Pref).  Ã  ⇒ (Ã )Ã (Ã )

Finally, the list of the basic logics is ended with Routley and Meyer’s Basic

Logic B (cf. [15], Chap. 8] that is formulated by adding A5, A6 and the rule

Con to B+.

Now, the following deep relevant extensions of B are considered (cf. [6]).

DW: B plus

A9. (Ã )Ã (¬ Ã ¬)

19



DJ: DW plus

A10. [(Ã ) ∧ ( Ã )]Ã (Ã )

DK: DJ plus

A11.  ∨ ¬
DR: DK plus

Specialized reductio (sr). ⇒ ¬(Ã ¬)

Each of the relevant logics just defined can “deep relevantly” be supple-

mented with the meta-rule (see [6])

Summation (MRs). ⇒  ⇒  ∨⇒  ∨

These deep relevant logics can be extended to the standard relevant logics

as follows. In A1-A10 and MP change the deep relevant conditional Ã for →
now representing the relevant conditional. We have (some axioms and rules of

DW are not independent now; see, e.g., [15]):

TW: DW plus

A12. (→ )→ [( → )→ (→ )]

A13. ( → )→ [(→ )→ (→ )]

T: TW plus

A14. [→ (→ )]→ (→ )

A15. (→ ¬)→ ¬

E: T plus

A16. [[(→ ) ∧ ( → )]→ ]→ 

R: T plus

A17. → [(→ )→ ]

RM: R plus

A18. → (→ )

TW is Contractionless Ticket Entailment; T, Ticket Entailment ; E, En-

tailment (cf. [1], §26.1 concerning this axiomatization of E); R, Logic of the

Relevant Conditional, and, finally, RM is R-Mingle (we remark that RM lacks

the vsp: in RM the conditional → is not actually a relevant conditional).
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Appendix 2. Given B+, (*) and(**) are equiv-
alent

Firstly, we show that the

Contraction rule (rW). → (→ )⇒ → 

and the

Modus Ponens axiom (MPa). [ ∧ (→ )]→ 

are equivalent. In the proofs to follow, we use → instead of Ã since, as proved

in §4, (**) (so, MPa) cannot be a thesis of (deep relevant) logics verified by

weak relevant model structures.

(1a) MPa is derivable from Σ plus rW.
We prove:

Importation (Imp). → ( → )⇒ ( ∧)→ 

whence MPa is immediate by A1.

1. → ( → ) Hypothesis

2. ( ∧)→ ( → ) By 1 and Trans

3. ( → )→ [( ∧)→ ] By A2 and Suf

4. ( ∧)→ [( ∧)→ ] By Trans, 2, 3

5. ( ∧)→  By rW, 4

(1b) rW is derivable from Σ plus MPa.
Firstly, notice that the rule ‘Factor’

rF. →  ⇒ ( ∧)→ ( ∧)
is immediate in Σ by A2, Trans and CI∧. Also, that the thesis ‘Idempotence’

Idem. → ( ∧)
is derivable in Σ by A1, Adj and CI∧. Then, we have:

1. → (→ ) Hypothesis

2. [ ∧ (→ )]→  MPa

3. ( ∧)→ [ ∧ (→ )] rF, 1

4. ( ∧)→  Trans, 2, 3

5. →  Trans, 4, Idem

On the other hand, we recall that (**) and (*) are

(*). 
+1→  ⇒ 

→ 

(**). [ ∧ ( → )]⇒ 
→ 
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where 
→  abbreviates → [→ (→ (→ ))] with  occurrences of

.

(2a) (**) is derivable from B+ plus (*).

1. [ ∧ ( → )]→  A2

2. (→ )→ [[ ∧ ( → )]→ ] Suf, 1

By − 1 applications of Pref:

3. (
→ )→ [

−1→ [ ∧ ( → )]→ ]] (A2)

Then,

4. [ ∧ ( → )]→ (
→ ) (A2)

5. [ ∧ ( → )]→ [
−1→ [[ ∧ ( → )]→ ]] Trans, 3, 4

On the other hand,

6. {→ [[ ∧ ( → )]→ ]}→
{[ ∧ ( → )]→ [[ ∧ ( → )]→ ]} Suf, 1

whence by − 2 applications of Pref,

7. { −1→ [[ ∧ ( → )]→ ]}→
{ −2→ [[ ∧ ( → )]→ [[ ∧ ( → )]→ ]]}

Then, by Trans, 5, 7, we have one of the two fundamental schemes in the proof:

8. [ ∧ ( → )]→ { −2→ [[ ∧ ( → )]→ [[ ∧ ( → )]→ ]]}

On the other hand,

9. {→ [[ ∧ ( → )]
2→ ]}→

{[ ∧ ( → )]→ [ ∧ ( → )]
2→ ]} Suf, 1

10. {→ [→ [[ ∧ ( → )]
2→ ]]}→

{→ [[ ∧ ( → )]
3→ ]} Pref, 9

11. {→ [[ ∧ ( → )]
3→ ]}→

[[ ∧ ( → )]
4→ ] Suf, 1

12. { 2→ [[ ∧ ( → )]
2→ ]}→

[[ ∧ ( → )]
4→ ] Trans 10, 11
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Repeating the argumentation in lines 10-12, we get the second fundamental

scheme in the proof,

13. { −2→ [[ ∧ ( → )]
2→ ]}→

{[ ∧ ( → )]
→ ]}

Then,

14. [ ∧ ( → )]→ [ ∧ ( → )]
→ ] Trans, 8, 13

That is,

15. [ ∧ ( → )]
+1→ 

whence, by (*),

16. [ ∧ ( → )]
→ 

as was to be proved.

We remark that

(**). [ ∧ ( → )]
→ 

is not derivable from B+ and

(*)0.  +2→  ⇒ 
+1→ 

as shown in Appx. 3.

(2b) (*) is derivable from B+ plus (**).

1. → (
→ ) Hypothesis

2. ( ∧)→ [ ∧ ( → )] rF, 1

3. → ( ∧) Idem

4. → [ ∧ ( → )] Trans, 2, 3

5. [ ∧ ( → )]→ [[ ∧ ( → )]
−1→ ] (**)

6. → [[ ∧ ( → )]
−1→ ] (Trans, 4, 5)
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On the other hand,

7. [[ ∧ ( → )]→ ]→ (→ ) Suf, 4

8. {[ ∧ ( → )]→ [[ ∧ ( → )]→ ]}→
[[ ∧ ( → )]→ (→ )] Pref, 7

9. [[ ∧ ( → )]→ (→ )]→ [→ (→ )] Suf, 4

10. {[ ∧ ( → )]→ [[ ∧ ( → )]→ ]}→
[→ (→ )] Trans, 8, 9

11. [[ ∧ ( → )]
3→ ]→ [[ ∧ ( → )]→

[→ (→ )]] Pref, 10

12. {[ ∧ ( → )]→ [→ (→ )]}→
[→ [→ (→ )]] Suf, 4

13. [[ ∧ ( → )]
3→ ]→ (

3→ ) Trans, 11, 12

By repeating the argumentation, we get,

14. [[ ∧ ( → )]
−1→ ]→ (

−1→ )

Then, by Trans, 6, 14,

15. → (
−1→ )

i.e.,

16. 
→ 

as was to be proved.

Appendix 3. Matrices

We record some matrices used in one way or another throughout the paper

(designated values are starred). Save for one case (M2, below), in all matrices

that follow  ∨  and  ∧ , for all ,  ∈ , are understood as { } and
{ }, respectively. In case a tester is needed, the reader may use that in
[11]. We have tried to provide the simplest possible matrices for each one of our

examples.

1. Meyer’s Crystal Lattice CL

The structure of CL is the following:
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the conditional and negation being defined as follows:

→ 0 1 2 3 4 5 ¬
0 5 5 5 5 5 5 5

*1 0 1 2 3 4 5 4

*2 0 0 2 0 2 5 2

*3 0 0 0 3 3 5 3

*4 0 0 0 0 1 5 1

*5 0 0 0 0 0 5 0

(We have rephrased CL in the form of the rest of matrices in the Appen-

dix).

2. M1: (**) is not derivable from (*)0, given B+ (see Appx. 2).

The schemes referred to are the following:

(**). [ ∧ ( → )]
→ 

(*)0.  +2→  ⇒ 
+1→ 

M1 has the following structure:
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the conditional and the negation being defined as follows:

→ 0 1 2 3 ¬
0 3 3 3 3 3

1 1 3 3 3 1

2 1 2 3 3 2

*3 0 0 0 3 0

M1 verifies the logic B+ (see Appx. 1) plus the thesis

(
4→ )→ (

3→ )

but falsifies (() = 2, () = 0)

[ ∧ ( 2→ )]
2→ 

3. M2: a relevant logic with [( ∧)→ ]→ [→ ( → )] as a thesis.

M2 has the following structure (satisfying → and ∨ but not ∧):

the conditional and the negation being defined as follows:

→ 0 1 2 3 ¬
0 3 3 3 3 3

*1 0 1 2 3 1

*2 0 0 2 3 2

*3 0 0 2 3 0

On the other hand,  ∨  = { } but  ∧  6= { }:

∧ 0 1 2 3

0 0 0 0 0

*1 0 1 2 2

*2 0 2 2 2

*3 0 2 2 3

∨ 0 1 2 3

0 0 1 2 3

*1 1 1 2 3

*2 2 2 2 3

*3 3 3 3 3
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M2 verifies all logics axiomatized with any selection of the following axioms

and rules for → and ¬ (cf. Appx. 1).
A1. → 

A12. (→ )→ [( → )→ (→ )]

A13. ( → )→ [(→ )→ (→ )]

A14. [→ (→ )]→ (→ )

A17. → [(→ )→ ]

A5. → ¬¬
A6. ¬¬→ 

A15. (→ ¬)→ ¬

And regarding conjunction and disjunction, we select, among those veri-

fied, the following:

Adjunction (Adj).  &  ⇒  ∧
Elimination of ∧ (E ∧ ).  ∧ ⇒ 

A7. [(→ ) ∧ (→ )]→ [→ ( ∧ )]
A3. → ( ∨) /  → ( ∨)

Elimination of ∨ (E ∨ ). →  &  →  ⇒ ( ∨)→ 

A4. [ ∧ ( ∨ )]→ [( ∧) ∨ ( ∧)]
A19. (→ ) ∨ ( → )

A20. (→ )→ [→ ( ∧)]
A21. (→ )→ [( ∧ )→ ( ∧)]
A23. (→ )→ [(→ )→ [→ ( ∧)]]

and, most of all

A24. [( ∧)→ ]→ [→ ( → )]

Now, notice that M2 is a wr-matrix with 1 = {2}, 2 = {1} and  = 0
(cf. Definition 2.5). Consequently, any logic verified by M2 has the vsp

(cf. Proposition 2.8). But, on the other hand, the following facts have to

be remarked:

(a) None of the logics verified by M2 includes FD+ (see Appx. 1): A2

(∧)→  / (∧)→  is not verified (for example, (∧)→ 

is falsified when () = 1, () = 2). In this respect, as well as in
others, the logics verified by M2 are similar to those defined by Avron

in [2].

(b) Any logic formulated with one of A20, A21, A23 or A24 is not in-

cluded in RM (see Appx. 1): the cited theses are not theorems of

RM.
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Consequently:

(c) Some of the deep relevant logics definable from M2 are not included

in RM. In particular, those having A20 or A21 as axioms (A23 and

A24 can be theses of no deep relevant logic).

But, most of all, we want to point out that A24 can be a thesis of such

strong relevant logics as those definable from M2 as indicated above.

4. M3: strong relevant logics not including FD+ (see Appx. 1).

M3 is more in the spirit of standard relevant logic than M2 (it is in fact

displayed in [1], §14.7). Its structure is:

the conditional and the negation being defined as follows:

→ 0 1 2 3 ¬
0 3 3 3 3 3

1 0 1 0 3 1

2 0 0 2 3 2

*3 0 0 0 3 0

M3 is a wr-matrix (1 = 2, 2 = 1,  = 0). It verifies the same axioms
and rules as M2 (except A3, A19-A24) and, in addition,

A8. [(→ ) ∧ ( → )]→ [( ∨)→ ]

A9. (→ )→ (¬ → ¬)

Notice that given that A2 and A3 are falsified, none of the logics verified

by M3 includes FD+ (( ∧ ) →  and  → ( ∨ ) are falsified, for
example, when () = 2 and () = 1).

5. M4: Deep relevant logics not included in Classical Propositional Logic.

M4 has the following structure (satisfying ∧ and ∨ but not →):
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The conditional and the negation are defined as follows:

→ 0 1 2 3 ¬
0 1 1 1 1 3

*1 0 1 1 1 1

*2 0 0 2 1 2

*3 0 0 0 1 0

M3 verifies, among others, the following theses and rules: A1, A2, A3, A4,

A5, A6, A7, A8, A10, A19,

A25. [(→ ) ∧ ¬]→ ¬
A26. (→ )→ [( ∨)→ ]

A27. (→ )→ (→ )

A28. ( → )→ (→ )

A29. [(→ )→ ]→ 

A30. [(→ )→ ]→ 

and, most of all,

A31. ¬(→ ) ∨
which is not, of course, a classical tautology.

Now, notice that M4 is a wr-matrix (Definition 2.5). Consequently, all

logics verified by M4 have the vsp (Proposition 2.8). On the other hand,

it would be easy to show (but we cannot, of course, prove it here) that it

is possible to build upon M4 deep relevant logics with the thesis (see [13])

A310. ¬(Ã ) ∨

6. M5: Logics with the contraction rule but without the Modus Ponens ax-

iom.

The structure of M5 is:
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And the conditional and negation are defined as follows:

→ 0 1 2 ¬
0 2 2 2 2

1 0 2 2 1

*2 1 1 2 0

Following Brady’s strategy in [4] for axiomatizing 3-valued and 4-valued

matrices, it could be shown that M5 is axiomatized by adding the following

axioms to FD (we do not try to provide a set of independent axioms):

A32. ( ∧ ¬)→ ( ∨ ¬)
A33. ¬→ [ ∨ (→ )]

A34. → ( → )

A35. ( ∨ ¬) ∨ (→ )

A36. [(→ ) ∧]→ [(¬ ∨) ∨ ¬(→ )]

A37. [(→ ) ∧ ¬]→ [(¬ ∨) ∨ ¬(→ )]

A38. ¬ → [( ∨ ¬) ∨ ¬(→ )]

A39. [¬(→ ) ∧ ( ∧ ¬)]→ [(¬ ∨) ∨ (→ )]

Let us use ΣM5 to refer to this system. Now, notice that

A14. [→ (→ )]→ (→ )

is verified by M5, but

(**). [ ∧ ( → )]
→ 

is falsified, for any  ≥ 1, when  and  are assigned 2 and 0, respectively.
On the other hand, we remark that, although the prefixing axiom A13

( → ) → [( → ) → ( → )] is verified, the rule Suf is falsified
(set () = 1, () = 2 and () = 0). Consequently, ΣM5 does not
contain B+. Finally, notice that A39 is not a classical tautology, but that

it suffices to delete it, and then we can define from FD plus any selection

of A32-A38 strong logics contained in classical logic with A14 but lacking

(**).
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