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Abstract

In Rogerson and Restall’s “Routes to triviality” (Journal of Philosoph-

ical Logic, 36, 2006, p. 435), the “class of implication formulas known

to trivialize (NC)” (NC abbreviates “naïve comprehension”) is recorded.

The aim of this paper is to show how to invalidate any member in this

class by using “weak relevant model structures”. Weak relevant model

structures verify deep relevant logics only.
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1 Introduction

In [17], the “class of implication formulas known to trivialize (NC)” ([17], p. 435,

NC abbreviates “naïve comprehension”) is recorded. The aim of this paper is

to show how to invalidate any member in this class by using “weak relevant

model structures”. Weak relevant model structures verify deep relevant logics

only. Thus, it will be shown how to invalidate the elements belonging to the

aforementioned class in a wide spectrum of deep relevant logics. We begin by

describing the routes to triviality remarked by Rogerson and Restall. Then, we

explain the notion of depth relevance introduced by Brady. Finally, we specify

the structure of the paper.

1.1 Routes to triviality

In [17], languages with at least the connective → (conditional) are considered,

In this paper, logic and languages are as follows:

Definition 1.1 (Languages) The propositional language consists of a set of

denumerable propositional variables and some (or all) of the following connec-

tives: → (conditional), ∧ (conjunction), ∨, (disjunction) and ¬ (negation), the
biconditional (↔) being defined in the customary way; , , , etc., (possibly
with subscripts 0 1   + 1 2) are metalinguistic variables.

Let us now recall how Curry’s Paradox arises (cf. [9]). We set:
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Definition 1.2 (Logics, logics with contraction) The logics are formulated

on the propositional languages defined in Definition 1.1 in the Hilbert-style form.

A logic is a set of formulas closed under Modus Ponens (MP), Elimination of

the biconditional (E↔) and uniform substitution of propositional variables. Let

S be a logic. We say that S is a logic with contraction if it is closed under the

contraction law (W) [→ (→ )]→ (→ ).

Consider now the Comprehension Axiom in the form ∃∀( ∈  ↔ )
where  is not free in  (‘Naive comprehension’, NC). And let S be a logic with

contraction and S0 be a basic first order extension of S (cf. [3], p. 72). In [9] it
is shown that NC trivializes S0 as follows:

1.  ∈ ↔ ( ∈ → ) By NC

2.  ∈ → ( ∈ → ) E↔, 1
3. ( ∈ → )→  ∈  E↔, 1
4. [ ∈ → ( ∈ → )]→ ( ∈ → ) W

5.  ∈ →  MP 2, 4

6.  ∈  MP 3, 5

7.  MP 5, 6

But  is arbitrary. So, S0 is trivial.
Now, in [17] it is shown that a number of theses can replace W in the proof

just displayed. So, we begin by describing these theses (we shall essentially

maintain Rogerson and Restall’s notation and terminology). Firstly, we provide

a couple of auxiliary definitions:

Definition 1.3 (The classes of wffs , , ) Given a propositional lan-

guage, let  and  be propositional variables and ( ) an arbitrary but fixed
formula containing no variables other than  and . For each ( ) the classes
of wffs , ,  are defined as follows:  = {  ( )};  = { →
( ) ( )→ };  = {( )→ (→ ) → [( )→ ]}.
Definition 1.4 (-formulas, -formulas) Let 1   +1 be wffs. An

-formula is a formula of the form 1 → [2 → (→ ( → +1))]. And
a -formula is a formula of the form [(((+1 → ) → −1) → ) →
2]→ 1 where  ≥ 1.
Next, three new classes of wffs, , ,  are defined. In [17], it is proved

that, under certain circumstances, members of these classes will cause the same

effect caused by W when added to a basic first order extension S0 of a logic with
contraction S.

Definition 1.5 (The classes , , ) Let ( ), , ,  be as in

Definition 1.3. Furthermore, let  be an -formula in which  ≥ 1,  ∈ 
(1 ≤  ≤ ) and +1 ∈ . Then , ,  are defined as follows:  =
{ : +1 = };  = { : +1 = ( )};  = { : +1 = }.
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Notice that ,  and  have been defined for each wff ( ). Con-
cerning the classes of wffs just defined, the following theorem is proved in [17]

(Theorem 3, p. 432).

Theorem 1.6 (Rogerson and Restall Theorem) Let  and  be provable

in a logic S. Then, NC trivializes S if anyone of the following is the case: (1)

 ∈  (2)  ∈  and  ∈, (3)  ∈  and  ∈.

(1), (2) and (3) are the routes to triviality remarked by Rogerson and Restall.

Among the members in ,  and , Rogerson and Restall point out the

following:

1. Members of 

(a) The Axiom of relativity (A) [( → ) → ] →  and any general-

ization of it (Ag) [((( → ) → ) → ) → ] →  (with  ≥ 2
occurrences of ).

(b) The axiom of supercontraction (SW) [ → ( → )] →  and any of

its generalizations (SWg) [ → ( → ( → ( → ))] →  (with

 ≥ 2 occurrences of ).
(c) The axiom L [ → ( → )] → [[( → ) → ] → ] as well as

any extension of it obtained by adding any number  of antecedents

1   (Lg) 1 → [2 → ( → ( → [[ → ( → )] → [[( →
)→ ]→ ]))] (with  (1 ≤  ≤ ) either of the form → (→ )
or (→ )→ ).

2. Members of 

(a) The Axiom of contraction (W) [ → ( → )] → ( → ) and any
of its generalizations (Wg) { → [ → ( → ( → ))]} → {[ →
(→ (→ ))]} (with + 1 occurrences of  in the antecedent of
Wg and  in the consequent).

3. Members in 

(a) Peirce’s Law (PL) [( → ) → ] →  and any of its extensions

(PLg) 1 → [2 → ( → ( → [( → ) → ] → ]))] where 

(1 ≤  ≤ ) is either of the form → (→ ) or (→ )→ ), as in

the case of L.

In order to describe a first approximation to the aims of the paper, let us

illustrate with an example how Curry’s Paradox can be derived by following

Rogerson and Restall’s routes (for instance, we take route (3)). Let S and S0 be
as in the proof of Curry’s Paradox displayed above, and consider the wffs

1. [( )→ ]→ [[→ ( )]→ ]
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and

2. ( )→ (→ )

where (1) is a member of  ( = 2) and (2) is a member of . Then,

substitute  ∈  for  in the wffs ( ), (1) and (2), and let  = { : ( ∈
 )}. We have:

3. ( ∈  )→  ∈  NC, E↔
4.  ∈ → ( ∈  ) NC, E↔
5. [( ∈  )→  ∈ ]→ [[ ∈ → ( ∈  )]→  ∈ ] 1

6.  ∈  Mp (twice), 3, 4, 5

7. ( ∈  ) MP 4, 6

8. ( ∈  )→ ( ∈ → ) 2

9.  MP (twice) 6, 7, 8

The aim of this paper is to prove that if ( ) is a positive wff, then routes
to triviality described in Rogerson and Restall’s theorem are blocked in any logic

verified by weak relevant model structures of a certain type. In particular, route

(1) is blocked whenever ( ) is any wff subject to the conditions in Definition
1.3 (it need not be a positive formula). The notion of a “positive formula” and

a “weak positive formula” are defined as follows.

Definition 1.7 (Positive and weak positive wffs) Let L be a propositional

language (cf. Definition 1.1). Then, (1) a positive formula is a wff in which ¬
does not appear; (2) a weak positive formula is a wff in which → and ¬ do not
appear.

Before explaining the notion of depth relevance and related notions, let us

note a couple of remarks concerning the definitions of the classes ,  and

.

Rogerson and Restall’s definition differs from Definition 1.5 in the two fol-

lowing respects: (1) The case  = 0 is allowed. (2)  (1 ≤  ≤ ) can be a
tautology of S.

We then note the following remarks concerning points (1) and (2):

1. If  ∈  or  ∈  and  = 0, then it is obvious that  immediately
trivializes S.

2. If  ∈  and  = 0,  cannot generally be invalidated, given that
 → ( ∨ ), ( ∧ ) →  or ( → ) → ( → ) are wffs comprehended
in the general form ( ). Moreover, these wffs are theorems in all deep
relevant logics defined thus far (cf. Appendix 1). So, they do not cause

Curry’s Paradox ‘per se’, i.e., by themselves. But, on the other hand, and

leaving aside Curry’s Paradox, it certainly seems difficult to find grounds

to object to some thesis as (→ )→ (→ ), for example. Consequently,
the case in which  ∈  and  = 0 cannot in general be considered here
(anyway, notice that members in  require the help of some element in

 in order to cause Curry’s Paradox according to route (2)).
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3. Obviously, the case in which  (1 ≤  ≤ ) is a tautology cannot be
treated unless the structure of  is specified. Thus, this case is not

treated in this paper either.

1.2 Depth relevance

The “depth relevance condition” (drc) is introduced in [3]. In the referred paper,

the drc is motivated as a necessary condition (stated in syntactic terms) for

some paraconsistent logics rejecting the Contraction Law (W), which is used in

deriving Curry’s Paradox, as it has been shown above. Brady actually proceeds

as follows. He labels a Curry’s Paradox ‘basic’ if it is derived by using the

Contraction rule ( → ( → ) ⇒  → ). Then, he remarks: “Indeed, the

depth relevance condition provides a non-ad hoc way of avoiding such paradoxes

because it is not specifically aimed at avoiding the basic Curry-paradoxes and it

does have some alternative intuitive appeal, as indicated earlier in the paper.”

([3], p. 72) The present paper provides additional support for the drc in the

sense of Brady’s remark, by showing that depth relevance can be employed in

avoiding not only basic Curry-paradoxes but also those more complex types

described in Rogerson and Restall’s theorem.

The aim of [3] is to define the main logic with the drc. Brady’s strategy

consists in restricting the class of logics with the variable-sharing property (vsp,

see Definition 1.8 below) verified by Meyer’s Crystal matrix CL (see Appendix

2 where CL is displayed) with the drc. Then, he chooses the logic DR as the

preferred one among those defined from CL as indicated above (see Appendix

1 for a definition of DR and other relevant and deep relevant logics). Brady’s

investigations on the topic have been pursued in [4], [5] and most of all in [7].

And we remark that currently Brady prefers to found his logics for naïve set

theory in his semantics of “meaning containment” than to found them on the

drc (cf. [5] and [7]). We also remark that DJ is Brady’s preferred logic in these

subsequent works (see [7], [8]).

On the other hand, Brady’s strategy has been generalized in [15]. We have

shown how to define a class of deep relevant logics from each weak relevant ma-

trix. “Weak relevant matrices” are defined in [13], where they are characterized

as matrices verifying only logics with the “variable-sharing property”. Finally,

in [14] weak relevant model structures defined on weak relevant matrices are

used in order to invalidate the Generalized Modus Ponens Axiom and other

related theses and rules.

But let us define the notion of “depth relevance”. As it is known, the follow-

ing is a necessary property of any relevant logic S, according to Anderson and

Belnap, (cf. [1]):

Definition 1.8 (Variable-sharing property –vsp) If →  is a theorem

of S, then  and  share at least one propositional variable.

As it has been remarked, in [3], Brady strengthens the vsp to the drc. In

order to define the latter, we need the notion of “depth of a subformula within

a formula” (cf. [3], [6]] §11).
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Definition 1.9 (Depth of a subformula within a formula) Let  be a wff

and  a subformula of . Then, “the depth of  in ” (in symbols, [])
is inductively defined as follows: (1)  is . Then, [] = 0. (2)  is

¬. Then, [] =  if [¬] = . (3)  is  ∧  ( ∨ ). Then,

[] = [] =  if [ ∧] =  ([ ∨] = ). (3)  is  → .

Then, [] = [] = + 1 if [ → ] = .

Then, we set:

Definition 1.10 (Depth relevance condition –drc) Let S be a propositio-

nal logic with → among its connectives (cf. Definition 1.1). S has the depth

relevance condition (or S is a deep relevant logic) if in all theorems of S of the

form  →  there is at least a propositional variable  common to  and 

such that [] = [].

Regarding the notions just defined, we shall employ the notation recorded

in the following remark,

Remark 1.11 (Notation) Let ,  be wffs,  and  subformulas of ,  a

subformula of  and  a propositional variable. Then,

() means “the − 

occurrence (from left to right) of  in ”. Next,

() means “the last occurrence

(from left to right) of  in ”. And,

(()) can be read as “the −  occur-

rence (from left to right) of  in the subformula  of ”; and thus,

((()))

or

((())) can be read similarly. On the other hand, [()] =  means

the “depth of  (appearing in ) in  is ” and [(())] =  can be read

similarly. So, [

] =  means “the depth of the −  occurrence (from left

to right) of  in  is ”, and [

()] =  or [


(())] =  can be read

similarly. Finally, ∆() = ∅ means that  and  do not share variables at

the same depth.

Example 1.12 (Depth. depth relevance) Consider the following wffs: (1)

(→ ¬)→ [(¬∧)→ [(∨)→ ]]; (2) (→ )→ [[→ ( → )]→ (→ )]
and (3) [→ (→ )]→ (→ )
We have: (a) the variables , ,  and  have depth 2 in (1); the variables

,  and  have depth 3 in (1); (b) antecedent and consequent of (3) have the
underlined  at the same depth (notice that (3) is an instance of the Contraction

Law W); (c) antecedent and consequent of (2) do not share variables at the same

depth; that is, ∆( →  [( → ( → )] → ( → )) = ∅; (d) let us refer by 2
to the wff in (2). Then, [

1
 2] = 2, [

2
 2] = 4 (or, equivalently, [


 2] = 4);

[ 2(→ )] = 3, [ 2(→ ( → )( → ))] = 4.

This introduction is ended by displaying the structure of the paper. In

Section 2 (“Basic weak relevant model structures”), it is shown how to define

basic weak relevant model structures (wr-ms) on weak relevant matrices (wr-

matrices). Then, the fundamental theorem on wr-ms in proved: if  →  is
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valid in a wr-ms, then ∆() 6= ∅. This theorem is a generalization (for ba-

sic wr-ms) of Brady’s theorem stating the same fact for the logic DR that is

verified by the wr-ms MCL built upon Meyer’s matrix CL (see Theorem 3 in

[3]). In Section 3 (“Other weak relevant modal structures”), by strengthening

the conditions on wr-matrices, other types of wr-matrices are introduced. Then,

corresponding types of wr-ms built upon the wr-matrices are defined. Finally,

generalization and extensions of the fundamental theorem in wr-ms are proved

for these new wr-ms. In Section 4 (“Blocking the routes to triviality”), it is

shown that the theorems proved in Section 3 invalidate general classes of wffs

among which those defined in Rogerson and Restall’s theorem are to be found.

These theorems are now used in Section 4 to prove a series of facts whence it fol-

lows that the routes to triviality remarked by Rogerson and Restall are blocked

in certain natural wr-ms. In Section 5 (“Concluding remarks”), we draw some

conclusions from the results obtained and suggest some directions for further

work in the same line. We have added two appendices. In Appendix 1, the main

relevant and deep relevant logics mentioned throughout the paper (and in Ap-

pendix 2) are defined. In Appendix 2, the notion of a logical matrix and related

notions are, for definiteness, revisited. Then, examples of the different types of

wr-matrices are displayed. Results of [3], [14] and [15] are not presupposed.

2 Basic weak relevant model structures

In this section, “weak relevant model structures” (wr-ms, for short) are defined

and the fundamental theorem on wr-ms is proved.

2.1 Basic wr-ms

We begin by defining the notion of a “weak relevant matrix” (cf. the definition

of “logical matrix” in Appendix 2).

Definition 2.1 (Weak relevant matrices –wr-matrices) Let  be a log-

ical matrix, 1 and 2 be non empty subsets of  such that 1 ∩ 2 = ∅
and  ∈  . Finally, the following conditions are fulfilled: (1) ∀∀ ∈ 1

∧( ) & ∨( ) & →( ) & ¬() ∈ 1; (2) ∀∀ ∈ 2 ∧( ) &
∨( ) & →( ) & ¬() ∈ 2; (3) ∀ ∈ 1∀ ∈ 2 →( ) =  ; (4)

∀ ∈ 1 ∪2 →(  ) =  . Then,  is a weak relevant matrix (wr-matrix,

for short).

Example 2.2 (Some wr-matrices) All matrices displayed in Appendix 2 are

wr-matrices. For instance, Meyer’s matrixCL (1) is wr-matrix where 1 =
{2}, 2 = {3} and  = 0.

Concerning wr-matrices, we have the following basic proposition (cf. Propo-

sition 2.8 in [14]).

Proposition 2.3 (Logics verified by wr-matrices have the vsp) Let be

a wr-matrix and S be a logic verified by it. Then, S has the vsp.
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Proof. Assume the hypothesis of Proposition 2.3 and let  →  be a wff

where  and  do not share propositional variables. We show that  → 

is falsified by  . Let  ∈ 1 and  ∈ 2. Define an assignment on  , ,

such that for each propositional variable  in  (respectively, in ), () = 

(respectively, () = ). By induction on the length of  and  and conditions

1, 2 in Definition 2.1, it follows that () =  and () = . Then, by condition

3 (Definition 2.1), (→ ) =  .

Example 2.4 (Some logics verified by wr-matrices) In Appendix 2, we

have recorded some wr-matrices and a number of logics verified by each one of

them. Notice that all these logics have the vsp. That is, all are relevant logics

in the minimal sense of the term.

In what follows, our aim is to show how to define a class of deep relevant

logics from each wr-matrix. In order to do this, “wr-model structures” and

“valuation on model structures” are defined. We follow Brady’s strategy in

[3] where he shows how to define a class of deep relevant logics from Meyer’s

matrix CL (cf. 1 in Appendix 2). We have maintained his notation and
terminology as much as possible.

Definition 2.5 (Wr-model structures –wr-ms) Let  be a wr-matrix. A

wr-model structure (wr-ms for short),M , is the set {01  }
where 01   are all identical matrices to the wr-matrix  .

Now, before defining valuations and interpretations in wr-ms, it is important

to distinguish the connective defined by the function → in the wr-matrix from

the conditional of the logical language (cf. Definition 1.1). The former shall be

denoted by
→, where the label refers to the matrix  . In our papers preceding

this one, we considered logical languages in which a relevant and a deep relevant

conditional could be present. The former was interpreted according to the wr-

matrix  . However, in the present paper, we shall concentrate on the deep

relevant conditional, which is the only one considered.

Definition 2.6 (Valuations and interpretations in wr-ms) LetM be a

wr-ms. By  it is designated a function from the set of all propositional variables

to  in  (0 ≤  ≤ ). Then, a valuation  on M is a set of functions

 for each  ∈ {0 1    }. Given a valuation , each  is extended

to an interpretation  of all wffs according to the following conditions. For

each propositional variable , and wffs , : (i) () = (); (ii) (¬) =
¬(); (iii) ( ∧ ) = () ∧ (); (iv) ( ∨ ) = () ∨ (); (v)

(
→ ) = ()

→ () where (i)-(v) are calculated according to the wr-
matrix  . In addition, formulas of the form  →  are evaluated as follows

( ∈  . Cf. Definition 2.1): (via)  = 0: ( → ) = ; (vib) 0    :

(→ ) = −1(
→ ); (vic)  = : (→ ) ∈  iff (

→ ) ∈  for

all  (0 ≤  ≤ ). Then, the interpretation  on M extending  is the set of

functions  for each  ∈ {0 1    }.
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Next, validity is defined as follows.

Definition 2.7 (Validity in wr-ms) Let M be a wr-ms and 1  

wffs.  is valid in M (in symbols |=M ) iff () ∈  for all valua-

tions . And the rule 1  ⇒  preserves M -validity iff, if (1) ∈
  () ∈  , then () ∈  for all valuations .

This definition is extended to the case of propositional logics:

Definition 2.8 (Logics verified by wr-ms) Let M a wr-ms and S be a

logic (cf. Definition 1.2). M verifies S iff all axioms of S areM -valid and

all rules of S preserveM -validity.

Example 2.9 (Some wr-ms) In Appendix 2, some wr-matrices are recorded.

On each one of these wr-matrices, a wr-ms can be defined as indicated in De-

finition 2.5, validity being understood as in Definition 2.7. For instance, the

wr-ms MCL is defined on the matrix CL (1, cf. Appendix 2). MCL verifies

DR and other deep relevant logics (cf. [3] and Appendix 1). Or, to take another

example, the wr-msMSUM
is built upon the matrix SUM (4, cf. Appendix

2) which verifies Routley and Meyer’s basic logic B plus the axiom “summation”

(25 in Appendix 1 (cf. [15]).

2.2 The fundamental theorem on wr-ms

Next, we prove a lemma leaning on which the fundamental theorem on wr-ms

is proved. This lemma will also be useful in the following section. Firstly, we

define the notion of “degree of a formula” (in symbols, () for a wff )

inductively as follows.

Definition 2.10 (Degree of formulas) (1) If  is a propositional variable,

then () = 0. (2) If  is of the form ¬ and () = , then () = .

(3) If  is of the form  ∨  or  ∧ , () =  and () = , then

() = {}. (4) If  is of the form  → , () =  and

() = , then () = {}+ 1.

Therefore, the degree of a formula  is the maximum number of nested ‘→’s
in .

The lemma that follows (the lemma supporting the fundamental theorem)

shows how to assign some elements of 1 (or 2) to any wff .

Lemma 2.11 (Interpreting wffs with 1 and 2) LetM be a wr-ms

where  ∈ 1 and  ∈ 2; and let  be a wff of degree . Then, for all

interpretations ,  0 defined on M as indicated below, we prove, for each

subformula  of  and for each depth  that  occurs in : (1)−() ∈ 1

(in particular, () ∈ 1). (2) 
0
−() ∈ 2 (in particular, 

0
() ∈ 2).

Now,  and  0 are defined by extending the valuations , 0, respectively,
according to clauses (i)-(vi) (Definition 2.6). These valuations are in their turn

9



defined as follows. For each propositional variable , we set: (1) −() = 

for each depth  that  occurs in ; (2) 0−() =  for each depth  that 

occurs in ; (3) () and 0() are arbitrarily assigned if    or  =  − 

but  does not occur at depth  in .

Proof. We prove case (1) (the proof of case (2) is similar). Let  ∈  and

() = 0() =  if    or  =  −  but  does not occur at depth  in

. Then, notice that for each  ∈ {0 1   }  and 0 have been defined.
Now, the proof is by induction on the evaluation procedure of subformulas of 

(cf. Definition 2.1 and Definition 2.6).

1.  is a propositional variable. Then, case (1) follows by definition of  and

(i) (Definition 2.6).

2.  is of the forms ¬,  ∧  or  ∨ . Then, the proof is immediate

by condition (1) (Definition 2.1) and (ii)-(iv) (Definition 2.6). Let us, for

instance, consider the case when  is of the form ∨. If [∨] = ,

then [] = [] = . By hypothesis of induction, −() ∈ 1

and −() ∈ 1, whence −(∨) ∈ 1 by condition (1) (Definition

2.1) and (iv) (Definition 2.6).

3.  is of the form  → . If [ → ] = , then [] = [] = +
1. By hypothesis of induction, −(+1)() ∈ 1 and −(+1)() ∈ 1,

that is, −(+1)(
→ ) ∈ 1 by condition (1) (Definition 2.1) and (v)

(Definition 2.6). So, −( → ) ∈ 1 by clause (vib) (Definition 2.6).

With the proof of subcase 3, case (1) is proved. Then, in particular, () ∈
1 as  is a subformula of itself at depth 0 in .

Theorem 2.12 (The fundamental theorem on basic wr-ms) LetM be

a wr-ms and suppose that  and  are wffs such that ²M  → . Then,

∆() 6= ∅ (that is,  and  share at least one variable at the same depth,

cf. Remark 1.11).

Proof. For reductio, suppose that  →  is a wff such that  and  do not

share variables at the same depth. Now, letM be a wr-ms where  ∈ 1 and

 ∈ 2. We show that  →  is notM -valid. Let ( → ) = . Then

notice that () ≤  − 1 and () ≤  − 1 and either () =  − 1 or
() =  − 1. So, the maximum depth of a subformula occurring in either 

or  is − 1. Then, the following valuation  is defined. For each propositional
variable , we set: (1) −−1() =  for each depth  that  occurs in . (2)

−−1() =  for each depth  that  occurs in . (3) () is arbitrarily
assigned if  ≥  or  =  −  − 1 but  occurs at depth  neither in  nor

in . Next,  is extended to an interpretation  according to clauses (i)-(vi)

(Definition 2.6). By Lemma 2.11, we have:

1. For each subformula  of  and for each depth  that  occurs in ,

−−1() ∈ 1.
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2. For each subformula  of  and for each depth  that  occurs in ,

−−1() ∈ 2.

Now, as  (respectively, ) is a subformula of itself at depth 0 in  (re-

spectively, in ), we have −1() ∈ 1 and −1() ∈ 2. By condition (3)

(Definition 2.1) and clause (v) (Definition 2.6), −1(
→ ) =  whence by

clause (vib) (Definition 2.6), ( → ) =  , i.e., ( → ) ∈  (clause

(vic), Definition 2.6), as it was to be proved.

Theorem 2.12 is a generalization (to any wr-ms) of Brady’s Theorem 1 ([3],

pp. 68-69] proved for the wr-msMCL (cf. Example 2.9).

Consider now t1-t10 below. Although each one of them can appear in logics

with the vsp, these are theses containing instances in which the antecedent and

consequent do not share variables at the same depth. (Save for t6 and t7, these

wffs are theorems of relevant logic R –see [1] and Appendix 1. Concerning t6

and t7 see [13].)

t1. (→ )→ [( → )→ (→ )]

t2. ( → )→ [(→ )→ (→ )]

t3. [(→ )→ ]→ 

t4. [ ∧ (→ )]→ 

t5. → [(→ )→ ]

t6. → (→ )

t7. [(→ )→ ]→ 

t8. (→ ¬)→ ¬
t9. [(→ ) ∧ ¬]→ ¬
t10. [(→ ) ∧ (→ ¬)]→ ¬

Now, Theorem 2.12 guarantees that t1-t10 and similar formulas are ruled out

by any wr-ms (cf. Example 4.1 in [14]).

Remark 2.13 Consider, however, the following wffs where metalinguistic vari-

ables that can share propositional variables (when substituted by particular wffs)

at the same depth are underlined (double underlined).

t11. [→ (→ )]→ (→ )

t12. [→ ( → )]→ [( ∧)→ ]

t13. (→ )→ [→ (→ )]

t14. (→ )→ [ → (→ )]

t15. [(→ )→ ]→ [(→ )→ ]

t16. [( → )→ ]→ [(→ )→ ]

t17. [( ∧)→ ]→ [→ ( → )]

As pointed out in [14], the problem with t11-t17 is that they break the “depth

relevant condition” (drc) when added to weak positive logics with this property.
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Nevertheless, t11-t17 are not falsified by Theorem 2.12 which only falsify wffs

of the form  →  when  and  do not share propositional variables at the

same depth.

The aim of the following section is (a) to prove a generalization of Theorem

2.12 leaning on which t11-t17 are falsified along with many other wffs inaccept-

able from the deep relevant point of view, and (b) to define more restricted

classes of wr-ms that falsify undesirable wffs that cannot be falsified by the

aforementioned generalization of Theorem 2.12.

3 Other weak relevant model structures

In some sense, this is the main section of the paper. Its aims are (1) to define

new types of wr-matrices by strengthening the conditions on wr-matrices as de-

fined in the preceding section; (2) to define the types of wr-ms corresponding

to the new types of matrices defined in (1); and finally, (3) to prove some gen-

eralizations and extensions of the fundamental theorem for basic wr-ms proved

in Section 2 (Theorem 2.12). These generalizations and extensions of the fun-

damental theorem will be used for blocking the routes to triviality described in

Rogerson and Restall’s theorem (Theorem 1.6) in the following section.

3.1 Other wr-ms

We begin by defining new types of matrices.

Definition 3.1 (Weak relevant matrices. Type 1) Let  be a wr-matrix

such that  ∈  . Furthermore, in addition to conditions (1)-(4) in Definition

2.1, the following conditions are fulfilled: (5) →(   ) =  ; (6) ∀ ∈ 2

→(  ) =  ; 7. ∧(   ) = ∨(   ) =  ; (8) ∀ ∈ 2 →(  ) =
 . Then,  is a weak relevant matrix of type 1, wr(1)-matrix for short.

Example 3.2 (Some wr(1)-matrices) The following matrices in Appendix

2 are wr(1)-matrices: 1237 and 8.

Definition 3.3 (Weak relevant matrices. Type 2) Let  be a wr-matrix

fulfilling the following conditions (in addition to (1)-(4) in Definition 2.1 and

(5), (6), (7) in Definition 3.1): (9) ∧(   ) = ∨(   ) = →(   ) =
 ; (10) ∀ ∈ 2 →(  ) =  . Then,  is a weak relevant matrix of type

2, wr(2)matrix for short.

Example 3.4 (Some wr(2)-matrices) The following matrices in Appendix

2 are wr(2)m-matrices: 1246 and 8.

Definition 3.5 (Weak relevant matrices. Type 1, 2) A weak relevant ma-

trix of type 1, 2, a wr(1, 2)-matrix, for short, is a wr-matrix such that  ∈ 

and fulfills (in addition to conditions (1)-(4) in Definition 2.1), conditions (5)-

(10) in Definition 3.1 and Definition 3.3.

12



Example 3.6 (Some wr(1, 2)-matrices) The following matrices in Appen-

dix 2 are wr(1, 2)-matrices: 12 and 8.

Now, the new types of weak relevant model structures are defined in a similar

way to which wr-ms were defined from wr-matrices (cf. Definition 2.5).

Definition 3.7 (wr(1)-ms, wr(2)-ms and wr(1, 2)-ms) Let be a wr(1)-

matrix. A wr(1)-model structure (wr(1)-ms, for short) is the set {01 

} where 01   are all identical matrices to  . Then,

wr(2)-model structures (wr(2)-ms) and wr(1, 2)-model structures (wr(1,2)-ms)

are defined similarly (cf. Definition 2.5).

Example 3.8 (Some wr(1)-ms, wr(2)-ms and wr(1, 2)-ms) A wr(1)-ms

can be defined on each one the wr(1)-matrices in Appendix 2 as indicated in

Definition 3.7. And particular wr(2)-ms and wr(1, 2)-ms are obtained similarly.

Consider, for instance, the wr-model structures in Example 2.9: MCL is a wr(1,

2)-ms andMSUM is a wr(2)-ms (MSUM is not a wr(1)-ms).

Remark 3.9 (Valuations, interpretations, validity) Given that wr(1)-ms,

wr(2)-ms and wr(1, 2)-ms are weak relevant model structures, we remark that

valuations, interpretations and validity in the new wr-ms are understood exactly

as in Definition 2.6 and Definition 2.7. Also, the notion of a “logic verified by

a wr(1)-ms (wr(2)-ms, wr(1, 2)-ms)” is understood according to Definition 2.8.

We note that in order to fulfill the aims of the paper, stated in Section 1,

there is a type of wr-matrices (and, so, of wr-ms) yet to be defined (in Section

3.4 below). But for now, we shall proceed into proving the generalizations

of Theorem 2.12 referred to above. The wr-ms defined thus far (wr(1)-ms,

wr(2)-ms and wr(1, 2)-ms) provide the most useful (i.e. generally applicable)

generalizations and extensions of Theorem 2.12.

3.2 The main property of -wffs in wr-ms

In the rest of this section, we shall essentially be dealing with -formulas and

-formulas. In this subsection, we first prove a preliminary property and then,

the main property of -wffs. We begin by recalling the definition of this type

of formulas (cf. Definition 1.4). An -formula is a formula of the form 1 →
[2 → ( → ( → +1))] and a -formula is a formula of the form

[(((+1 → ) → −1) → ) → 2] → 1 where  ≥ 1 and 1  +1

are wffs (cf. Definition 1.1 on the languages used in the paper).

Next, we record a remark on degree and depth in -wffs and -wffs.

Remark 3.10 (Degree and depth in -wffs and -wffs) Let Θ be an -

formula or a -formula of degree . We note the following facts (cf. Remark

1.11 on notation, Definition 1.9 on the notion of “depth” and Definition 2.10

on that of “degree”):

1. For each  (1 ≤  ≤ ), [Θ] = .

13



2. [+1Θ] = 

3. (+1) ≤  − 

4. For each  (1 ≤  ≤ ), () ≤  − .

5. Let  be a variable in  (1 ≤  ≤ ). (a) If () = 0, then [] =
0 and [Θ()] = . (b) If () =  ( ≥ 1), then [] = 

(1 ≤  ≤ ) and [Θ()] =  ( + 1 ≤  ≤  + ).

6. Let  be a variable in +1. Then: (a) If (+1) = 0, then [+1] =
0 and [Θ(+1)] = . (b) If (+1) =  ( ≥ 1), then [+1] =
 (1 ≤  ≤ ) and [Θ(+1)] =  (+ 1 ≤  ≤ +).

The preliminary property which we referred to above is the following.

Lemma 3.11 (A preliminary property of -wffs in wr-ms) Let M be

a wr-ms and (Θ) 1 → [2 → ( → ( → +1))] be a M -valid -

formula. Then, ∆(Θ(+1)Θ()) 6= ∅ for some  ( ≤  ≤ ) (i.e., there
is some propositional variable  in +1 such that [Θ(+1)] = [Θ()]
for some  (1 ≤  ≤ )).

Proof. Assume the hypothesis of Lemma 3.11. (1)  = 1. The proof follows
by Theorem 2.12. (2)   1. For reductio, suppose ∆(Θ(+1)Θ()) = ∅ for
each  ( ≤  ≤ ). Then, we prove that Θ is notM -valid, which contradicts

the hypothesis.

Let  ∈ 1,  ∈ 2,  ∈  and (Θ) = . We define a valuation  as

follows. For each propositional variable , we set: (1) −−() =  for each

depth  that  occurs in each  (1 ≤  ≤ ); (2) −−() =  for each depth

 that  occurs in +1; (3) () =  if  ≥  or  =  − −  (1 ≤  ≤ + 1)
but  occurs at depth  in no  (1 ≤  ≤  + 1). Notice that  has been
defined for each  ∈ {1 2    }, and that  is consistent since (by the
reductio hypothesis) no variable in +1 at depth  in Θ appears in some 

(1 ≤  ≤ ) at depth  in Θ. Next, we extend  to an interpretation  onM

according to clauses (i)-(vi) in Definition 2.6. Then, by Lemma 2.11, we have:

(4) −() ∈ 1 for each  (1 ≤  ≤ ); (5) −(+1) ∈ 2.

We can now proceed as follows. By (4), (5), condition (3) (Definition 2.1) and

clause (v) (Definition 2.6), −(
→ +1) =  ; and by clause (vib) (Defin-

ition 2.6), −(−1)( → +1) =  . Next, by (4), condition (4) (Definition

2.1) and clause (v) (Definition 2.6), −(−1)(−1
→ ( → +1)) =  ,

whence by clause (vib) (Definition 2.6), −(−2)(−1 → ( → +1)) =  .

By repeating the argumentation, we get −(−)(−(−1) → ( → ( →
+1))) =  , whence by clause (vic) (Definition 2.6), (1 → (→ ( →
+1))) ∈  , i.e., 2M Θ, contradicting the hypothesis.
Therefore, if Θ is valid in some wr-ms M , then ∆(Θ(+1)Θ()) 6= ∅

for some  (1 ≤  ≤ ).
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Remark 3.12 (t11-t17 are falsifiable in any wr-ms) As noted in Remark

2.13, t11-t17 are not ruled out by Theorem 2.12. They are however falsified by

Lemma 3.11. Consider the following instances of t11-t17:

t110. [→ (→ )]→ (→ )

t120. [→ ( → )]→ [( ∧ )→ ]

T130. (→ )→ [→ (→ )]

T140. (→ )→ [ → (→ )]

T150. [(→ )→ ]→ [(→ )→ ]

T160. [( → )→ ]→ [(→ )→ ]

T170. [( ∧ )→ ]→ [→ ( → )]

The last variable (from left to right) in each one of t110-t170 does not appear at
the same depth in the rest of the formula. Therefore, t11-t17 are falsified in any

wr-ms by Lemma 3.11.

Nevertheless, we note the following.

Remark 3.13 (Theses t18-22) Consider the following theses:

t18. [→ ( → )]→ [ → (→ )]

t19. [(→ )→ (→ )]→ [→ ( → )]

t20. [(→ )→ (→ )]→ [ → (→ )]

t21. [(→ )→ ]→ ( → )

t22. [(→ )→ ]→ ( → )

Lemma 3.11 cannot be used in order to falsify t18-t22 since variables in the

last subformula (from left to right) of each one of t18-t22 appear at the same

depth somewhere in the rest of the formula. Nevertheless, they are falsifiable by

Theorem 3.14, which is proved below.

As we have seen, Lemma 3.11 is provable for any wr-ms and so is the case

with Theorem 3.14 which, leaning on Lemma 3.11, records the fundamental fact

on -formulas.

Theorem 3.14 (The main property of -wffs in wr-ms) LetM be a wr-

ms and (Θ) 1 → [2 → ( → ( → +1))] be a M -valid -formula.

Then, for each  ( ≤  ≤  + 1) there is some  ( ∈ {1 2   + 1} and
 6= ) such that ∆(Θ()Θ()) 6= ∅.

Proof. Assume the hypothesis of Theorem 3.14. (1)  = 1. The proof follows by
Theorem 2.12. (2)   1. (a)  = 1. By Theorem 2.12, ∆(Θ(1)Θ()) 6= ∅ for
some  (2 ≤  ≤ +1). (b)  = +1. By Lemma 3.11, ∆(Θ(+1)Θ()) 6= ∅
for some  (1 ≤  ≤ ). (c)  is a member in the sequence 2   (i.e.,

2 ≤  ≤ ). For reductio, suppose that there is some  (2 ≤  ≤ ) such that
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∆(Θ()Θ()) = ∅ for each  (1 ≤  ≤ + 1) ( 6= ). We prove that Θ is
not M -valid, which contradicts the hypothesis. Let  ∈ 1,  ∈ 2,  ∈ 

and (Θ) = . Similarly, as in Lemma 3.11, we define an interpretation  on

M by leaning on the following : for each propositional variable  we set: (1)

−−() =  for each depth  that  occurs in ; (2) −−() =  for each

depth  that  occurs in each  ( ∈ {1 2  +1} and 6= ); (3) () = 

if  ≥  or  =  −  −  ( ∈ {1 2  + 1}) but  does not occur at depth 

in . Then, by Lemma 2.11, we have: (4) −() ∈ 1; (5) −() ∈ 2

for each  ( ∈ {1 2  + 1} and  6= ).
Now, we can proceed as follows. Suppose    − 1 (if  =  or  =

 − 1 the proof is similar). By (5), condition (2) (Definition 2.1) and clause
(v) (Definition 2.6), −(

→ +1) ∈ 2; by clause (vib) (Definition

2.6), −(−1)( → +1) ∈ 2. By repeating the argumentation, we get

:−(−(−))(+1 → (+2 → ( → ( → +1)))) ∈ 2. Now, by

(4), −(−(−))() ∈ 1. So, by condition (3) (Definition 2.1) and clause

(v) (Definition 2.6), −(−(−))(
→ (+1 → (+2 → ( → ( →

+1))))) =  , and then, by clause (vib) (Definition 2.6), −(−(−(−1)))(

→ (+1 → (+2 → ( → ( → +1))))) =  . On the other

hand, by (5), −(−(−(−1)))(−1) ∈ 2. So, by condition (4) (Defini-

tion 2.1) and clause (v) (Definition 2.6), we get, −(−(−(−1)))(−1
→

( → (+1 → ( → ( → +1))))) =  , and then, by clause

(vib), −(−(−(−2)))(−1 → ( → (+1 → ( → ( → +1))))) =
 . By repeating the argumentation, we have −(−(−(−)))(−(−1) →
(−(−2) → ( → ( → (+1 → ( → ( → +1))))))) =  . That

is, (1 → (2 → ( → ( → +1)))) =  , whence, by clause (vic)

(Definition 2.6), (Θ) ∈  , which contradicts the hypothesis, thus ending the

proof of case (2) (c).

Therefore, if Θ is valid in some wr-msM , then for each  (1 ≤  ≤ +1),
there is some  ( ∈ {1 2  +1} and  6= ) such that ∆(Θ()Θ()) 6= ∅.

Remark 3.15 (t18-t22 are falsified in any wr-ms) As pointed out in Re-

mark 3.13, Lemma 3.11 cannot be employed in falsifying t18-t22. Nevertheless,

these theses are falsified by using Theorem 3.14. Consider the following instances

of t18-t22 where a variable not appearing at the same depth in the rest of the

formula is underlined:

t180. [→ ( → )]→ [ → (→ )]

t190. [(→ )→ (→ )]→ [→ ( → )]

t200. [(→ )→ (→ )]→ [ → (→ )]

t210. [(→ )→ ]→ ( → )

t220. [(→ )→ ]→ ( → )

By Theorem 3.14, it is clear that T180-T220 are falsified in any wr-ms. So,
t18-t22 are valid in no wr-ms.
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3.3 The main properties of -formulas in wr(1)-ms and

wr(1,2)-ms

In what follows, we investigate the main properties of -formulas in wr(1)-ms

and wr(2)-ms. But in order to do this we need the lemmas that follow.

Lemma 3.16 (Interpreting wffs with  ) Let M be a wr(1)-ms and 

be a weak positive formula (cf. Definition 1.7). Then, for all interpretations

 defined on M as indicated below, we prove that () =  (in particular,

() =  ) for each subformula  of . Now,  is defined by extending the val-

uation  according to clauses (i), (iii) and (iv) (Definition 2.6). This valuation

is in its turn defined as follows. For each propositional variable , we set: (1)

0() =  if  occurs in . (2) () is arbitrarily assigned if  ≥ 1 or  = 0
but  does not occur in .

Proof. We recall that “weak positive formulas” are those in which only the

connectives ∧ and ∨ appear (cf. Definition 1.7). Consequently, () = 0.
Then, the proof of Lemma 3.16 is trivial by using condition (7) in Definition 3.1

(definition of wr(1)-ms).

Lemma 3.17 (Interpreting wffs with  ) Let M be a wr(2)-ms and 

be a positive formula (cf. Definition 1.7) of degree . Then, we define an inter-

pretation  on M based on the following valuation . For each propositional

variable , we set: (1) −() =  for each depth  that  occurs in . (2)

() is arbitrarily assigned if    or  =  −  but  does not occur at depth

 in . Then, we have −() =  (in particular, () =  ) for each

subformula  of  and depth  that  occurs in .

Proof. We recall that a “positive formula” is a wff in which ¬ does not appear
(cf. Definition 1.7). Then, the proof is similar to those of Lemma 2.11 and

Lemma 3.16 (use condition (9) in Definition 3.3).

Once we have lemmas 3.16 and 3.17 at our disposal we can prove theorems

3.18 and 3.19.

Theorem 3.18 (The main property of -wffs in wr(1)-ms) Let M be

a wr(1)-ms and (Θ) [(((+1 → )→ −1)→ )→ 2]→ 1 be aM -

valid -formula. Suppose, further, that  (1 ≤  ≤  + 1) is a weak positive
formula (cf. Definition 1.7) and  = 1 or  is an odd number. Then, there is
some  ( ∈ {1 2  + 1} and  6= ) such that ∆(Θ()Θ()) 6= ∅.

Proof. Assume the hypothesis of Theorem 3.18. (1)  = 1. The proof follows
by Theorem 2.12. (2)   1. (a)  = 1. By Theorem 2.12, there is some 

(2 ≤  ≤  + 1) such that ∆(Θ(1)Θ()) 6= ∅. (b)  is an odd number. Let
 be a weak positive formula in the sequence 2 3   +1, being  an

odd number. Suppose, for reductio, that for each  ( ∈ {1 2    + 1}
and  6= ), ∆(Θ()Θ()) = ∅. We prove that Θ is not M -valid, which

contradicts the hypothesis.
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Let  ∈ 2,  ∈  and (Θ) =  (notice that () = 0 since 

is a weak positive formula). As in Theorem 3.14, we define an interpretation

 on M leaning on the valuation , which is defined as follows. For each

propositional variable , we set: (1) −() =  for each variable  in 

(notice that for each variable  in , [] = 0 since () = 0); (2)
−−() =  for each depth  that  appears in each  ( ∈ {1 2  +1}
and  6= ); (3) () =  if  ≥  or  =  −  −  ( ∈ {1 2  + 1}) but 
does not occur at depth  in . Then, by Lemma 2.11 and Lemma 3.16, we

have: (4) −() =  ; (5) −() ∈ 2 for each  ( ∈ {1 2  +1}
and  6= ).
Now, we can proceed as follows. As in Theorem 3.14, we can suppose that

  − 1 given that if  =  or  = − 1, then the proof is similar to the one
we are going to display.

By (5), condition (2) (Definition 2.1) and clause (v) (Definition 2.6), −
(+1

→ ) ∈ 2; by clause (vib) (Definition 2.6), −(−1)(+1 → ) ∈
2. By repeating the argumentation, we get : −(−(−))([((+1 → )→
)→ +2]→ +1) ∈ 2. Now, by (4), −(−(−))() =  . So, by condi-

tion (4) (Definition 2.1) and clause (v) (Definition 2.6), −(−(−))([((+1 →
) → ) → +1]

→ ) =  . Then, by clause (vib) (Definition 2.6),

−(−(−(−1)))([((+1 → ) → ) → +1] → ) =  . On the other

hand, by (5), −(−(−(−1)))(−1) ∈ 2. So, by condition (8) (Definition

3.1), −(−(−(−1)))([((+1 → )→ )→ ]
→ −1) =  , and then,

by clause (vib) (Definition 2.6), −(−(−(−2)))([((+1 → ) → ) →
] → −1) =  . Next, again by (5), −(−(−(−2)))(−2) ∈ 2; and

by condition (6) (Definition 3.1), −(−(−(−2)))([((+1 → ) → ) →
−1]

→ −2) =  , whence, by clause (vib) (Definition 2.6), −(−(−(−3)))
([((+1 → ) → ) → −1] → −2) =  . By repeating the ar-

gumentation, −(−(−(−(−1))))([((+1 → ) → ) → −(−2)]
→

−(−1)) =  , and, finally, (clause (vib), Definition 2.6), −(−(−(−)))([(
(+1 → ) → ) → −(−2)] → −(−1)) =  , that is, ([((+1 →
) → ) → 2] → 1) =  whence (Θ) ∈  (clause (vic) –Definition

2.6) contradicting the hypothesis, thus ending the proof of case (2) (b).

Therefore, if M is a wr(1)-ms and Θ is a M -valid -formula and 

(1 ≤  ≤  + 1) is a weak positive formula ( = 1 or  is an odd number),
then there is some variable common to  and some  ( ∈ {1 2  +1} and
 6= ) at the same depth in Θ.
As we have seen, Theorem 3.18 is proved for wr(1)-ms provided  (1 ≤  ≤

) in Θ is a weak positive formula where  = 1 or  is an odd number. However,
if  is even, then wr(1)-ms are not sufficient and wr(1, 2)-ms are required. But,

on the other hand, weak positive formulas can be strengthened to positive ones.

Theorem 3.19 (The main property of -wffs in wr(1, 2)-ms) Let M

be a wr(1, 2)-ms and (Θ) [(((+1 → ) → −1) → ) → 2] → 1
be aM -valid -formula. Further, suppose that  (1 ≤  ≤ + 1) is a posi-
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tive formula (cf. Definition 1.7) and  = 1 or  is an even number. Then, there
is some  ( ∈ {1 2  + 1} and  6= ) such that ∆(Θ()Θ()) 6= Θ.

Proof. It is similar to that of Theorem 3.18. Thus, it will suffice to define the

valuation  on which the interpretation  on M is built in order to proceed

by reductio ad absurdum as above. Now, let  ∈ 2,  ∈  and (Θ) = .

For each propositional variable , we set: (1) −−() =  for each depth

 that  appears in ; (2) −−() =  for each depth  that  appears in

each ( ∈ {1 2  +1} and  6= ); (3) () =  if  ≥  or  = − − 

( ∈ {1 2   + 1}) but  does not occur at depth  in . Then, the details

completing the proof are left to the reader.

Remark 3.20 (t23 and t24 are falsified in wr(1)-ms) Consider the follow-

ing wffs:

t23. ( → )→ (→ )

t24. [→ ( → )]→ [(→ )→ (→ )]

t25. (→ )→ (→ )

t26. [(→ )→ ]→ [(→ )→ (→ )]

t27. {[(→ )→ ]→ }→ [(→ )→ (→ )]

t23-t27 cannot be falsified by using Theorem 2.12, Lemma 3.11 or Theorem 3.14.

But t23 and t24 are falsified by Theorem 3.18 and t25, t26 and t27 are falsified

by Theorem 3.19 (notice however that t25, t26 and t27 cannot be falsified by

Theorem 3.18).

Finally, we note that in order to invalidate the routes in Theorem 1.6, it

suffices Theorem 3.23 (1), an instance of Theorem 3.19 proved below, and valid

in any wr(2)-ms.

3.4 Other properties of wr(1)-ms and wr(2)-ms. Wr-model

structures of type 3

In what follows we prove a couple of properties that will be needed in the

following section. One is predicable of wr(1)-ms and the other of wr(2)-ms.

Then, we shall define wr(3)-ms and prove some general schemes not valid in

w(3)-ms. The proofs are similar to those developed above and we shall limit

ourselves to a sketch of the required interpretation on the wr-ms of the case

considered.

Theorem 3.21 (Two more schemes not valid wr(1)-ms) LetM be a

wr(1)-ms and (Θ) (5 → 4) → [(3 → 2) → 1], (Θ) (5 → 4) →
[(2 → 3) → 1] be wffs where (2) ≥ 1, (4) ≥ 1 and (1) =
(3) = (5) = 0. Then, (1) 2M Θ and (2) 2M Θ.
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Proof. Assume the hypothesis of Theorem 3.21. We prove case (1) (the proof of

case (2) is similar). Let  represent any propositional variable in this theorem

and in the rest of the theorems of the present section. Then, [Θ(1)] =
[Θ(5)] = 2, [Θ(2)] ≥ 4, [Θ(3)] = 3 and [Θ(4)] ≥ 3.
Next, we define an interpretation  on M assigning  to  at each depth

 that  appears in A1 and A5; and assigning  ( ∈ 2) to  at each depth 

that  occurs in 2, 3 and 4. Then, it is easy to show that (Θ) ∈  , as

was to be proved.

Remark 3.22 (t28 and t29 are falsified in wr(1)-ms) The wffs

t28. [→ (→ )]→ [[(→ )→ ]→ ]

t29. [→ (→ )]→ [[→ (→ )]→ ]

are instances of Θ and Θ (Theorem 3.21), respectively (notice that t28 and

t29 cannot be falsified by using the procedure in the proof of Theorem 3.18).

Theorem 3.23 (Two more schemes not valid in wr(2)-ms) Let M be

a wr(2)-ms and (Θ) ( → )→ , (Θ) (5 → 4)→ [(3 → 2)→ 1] be
wffs where  and 2 are positive formulas, ∆(Θ()Θ()) = ∆(Θ()Θ
()) = ∅, (2) ≥ 1 and (5) = 1, (1) = (3) = (4) = 0.
Then, (1) 2M

Θ and (2) 2M
Θ.

Proof. Case 1. Define an interpretation  on M assigning  to  at each

depth  that  appears in ; and assigning  ( ∈ 2) to  at each depth 

that  occurs in  and . Then, clearly, (Θ) ∈  , as was to be proved

(notice that if M is a wr(1, 2)-ms, then case 1 is immediate by Theorem

3.19). Case 2. We remark that [Θ(1)] = [Θ(4)] = 2, [Θ(3)] =
[Θ(5)] = 3 and [Θ(2)] ≥ 4. Thus, we can define an interpretation 

onM assigning  to  at each depth  that  appears in 2; and assigning

( ∈ 2) to  at each depth  that  appears in 1, 3, 4 and 5. Then,

(Θ) ∈  , as it was required.

Remark 3.24 (t30 and t31 are falsified in wr(2)-ms) The wffs

t30. [→ (→ )]→ (→ )

t31. [(→ )→ )]→ [[→ (→ )]→ ]

are instances of Θ and Θ (Theorem 3.23), respectively (notice that t25, t26

and t27 are instances of Θ, cf. Remark 3.20).

Next, wr(3)-ms are defined and a couple of properties of w(3)-ms are proved.

Definition 3.25 (Weak relevant matrices. Type 3) Let be a wr-matrix

(cf. Definition 2.1) with , 0 ∈ . Furthermore,  fulfills the following con-

ditions (in addition to (1)-(4); cf. Definition 2.1): (11) ∧( ) = ∨( ) =
→( ) = ; (12) ∧(0 0) = ∨(0 0) = 0; (13) →(0 0) = ; (14) →( 0)
= 0; (15) →(0 ) =  ; (16) →(  ) =  . Then,  is a weak relevant

matrix of type 3 (wr(3)-matrix, for short).
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Example 3.26 (Some wr(3)-matrices) The following matrices in Appendix

2 are wr(3) matrices: 1, 5, 6, 7 and 8.

Remark 3.27 (wr(3)-ms, interpretations, validity, wr(1, 2, 3)-ms)

Wr(3)-model structures are defined for wr(3)-matrices in a similar way to which

the rest of the wr-ms were defined (cf. Definition 3.7). Next, wr(1, 2, 3)-matrices

and wr(1, 2, 3)-ms are defined in a similar way to which wr(1, 2)-matrices and

wr(1, 2)-ms were defined (cf. Definition 3.5; Definition 3.7). Then, valuations,

interpretations, validity and the notion “a logic verified by a wr(3)-ms” are

understood as in Remark 3.9. Finally, particular wr(3)-ms (wr(1, 3)-ms, wr(2,

3)-ms, wr(1, 2, 3)-ms) are built upon wr(3)-matrices (wr(1, 3)-matrices, wr(2,

3)-matrices, wr(1, 2, 3)-matrices) in Appendix 2 as above (cf. Example 2.9).

We end the section with the following theorem and a couple of remarks.

Theorem 3.28 (A couple of schemes not valid in wr(3)-ms) LetM be

a wr(3)-ms and (Θ) (4 → 3) → (2 → 1); (Θ) (5 → 4) → [(3 →
2)→ 1] be wffs such that (a) Θ: 4 is a positive wff and (4) ≥ 1; and
(1) = (2) = (3) = 0. (b) Θ: 3 and 5 are positive formulas

and (3) ≥ 1, (5) = 1; and (1) = (2) = (4) = 0. Then,
(1) 2M Θ and (2) 2M Θ.

Proof. It is similar to those of Theorem 3.21 and Theorem 3.23. Case 1. Define

an interpretation  on M assigning  to  at each depth  that  occurs in

4; and assigning 0 to  at each depth  that  occurs in 1, 2 and 3.

Then, 2M Θ. Case 2. As (5) = 1, 5 is of the form  →  with

() = () = 0. Now, define an interpretation  on M assigning 0

to  at each depth  that  appears in ,  and 2, and assigning  to  at

each depth  that  appears in 1, 3 and 4. Then, it is easy to show that

2M Θ.

Remark 3.29 (t32 and t33 are falsified in wr(3)-ms) The wffs

t32. [(→ )→ )]→ (→ )

t33. [(→ )→ )]→ [[(→ )→ ]→ ]

are instances of Θ and Θ (Theorem 3.28), respectively.

Remark 3.30 (On t1-t33) The theses t1-t33 have been remarked in this and

the preceding section. We note that t7, t11 and t28-t33 belong to some of the

classes defined by Rogerson and Restall (cf. Definition 1.5), but the rest of them

do not.

4 Blocking the routes to triviality

In this section, we show how to block the routes to triviality defined in Rogerson

and Restall Theorem (Theorem 1.6). We begin by defining and invaliding two

important subclasses of -formulas (cf. Definition 1.5).
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4.1 Invaliding -formulas and -formulas

Firstly, we set:

Definition 4.1 (-formulas, -formulas) Let ( ) be as in Definition 1.3.
That is, ( ) is an arbitrary but fixed formula containing no variables other
than  and . And let Θ be an -formula (cf. Definition 1.5). In other words,

Θ is a formula of the form (Θ) 1 → [2 → ( → ( → +1))] where,
for each  (1 ≤  ≤ ),  ∈  (i.e,  is either of the form  → ( )
or ( ) → ) and +1 ∈  (i.e., +1 is ,  or ( )). Then, Θ is a

-formula if 1 is of the form → ( ); and Θ is a -formula if 1 is of the
form ( )→ .

Remark 4.2 (Notational convention) We shall use ,  and  (1 ≤  ≤
), respectively, when generally referring to the following wffs appearing in the
-formulas in the subsequent proofs: (1) any propositional variable; (2) any

member of ; (3) the  −  element  (be it of the form  → ( ) or
( ) → ) in the -formula. On the other hand, before proceeding into the

proofs, it may now be convenient to consult Remark 3.10.

In what follows, we show how to invalidate general classes of -formulas and

-formulas in the different types of wr-ms.

Proposition 4.3 (-formulas where (( )) = 0) Let M be a wr-

ms and Θ be an -formula where (( )) = 0. Then, 2M Θ.

Proof. Assume the hypothesis of Proposition 4.3. We prove that Θ is not

M -valid if it is a -formula (if Θ is a -formula, the proof is similar). (1)

 = 1. Then, Θ is of the form (→ ( ))→  and we have [Θ(1)] = 2
and [Θ()] = 1. So, ∆(Θ(1)Θ()) = ∅, and, thus, 2M Θ by Theorem
2.12. (2)  = 2. Suppose Θ is of the form ( → ( )) → (( → ( )) →
) (if Θ is of the form ( → ( )) → ((( ) → ) → ), the proof is
similar). Then, we have [Θ(1)] = [Θ()] = 2 but [Θ(2)] = 3. So,
∆(Θ(2)Θ(1)) = ∅ and ∆(Θ(2)Θ()) = ∅, and thus, 2M

Θ by Theorem
3.14. (3)  ≥ 3. Then, for any  (2 ≤  ≤  + 1), [Θ()] ≥ 3. So, Θ
is of the form 1 →  where ∆(Θ(1)Θ()) = ∅. Consequently, 2M Θ by
Theorem 2.12.

Proposition 4.4 (-wffs with  = 1, (( )) ≥ 1 and () = 0)
Let M be a wr-ms and Θ be an -formula where  = 1, (( )) ≥ 1
and () = 0. Then, 2M Θ.

Proof. Assume the hypothesis of Proposition 4.4. Suppose that Θ is a -

formula (if Θ is a -formula, the proof is similar). Firstly, notice that as

(( )) ≥ 1 and () = 0, then  is either  or else . Secondly, Θ

is of the form (→ ( ))→  where [
1
Θ(1)] = 2, [Θ(1(( ))] ≥ 3

and [Θ()] = 1 (cf. Remark 1.11 on notation). So, Θ is of the form  → 

with ∆() = ∅. Thus, 2M Θ by Theorem 2.12.
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The simple proof of Proposition 4.3 displayed above leans on the following

fact. Let Θ be an -formula, (( )) = 0 and    ( ∈ {1 2  }).
Then, [Θ()]  [Θ()] (cf. Remark 3.10). However, this is not the
case if (( )) ≥ 1. Let us illustrate the situation with a simple example.
Consider the following member Θ of  (cf. Definition 1.5) where  = 2 and
(( )) = 1 and let ( ) be, say,  → : (Θ) [ → ( → )] → [[ →
(→ )]→ ]. We have [

1
Θ] = [

0
Θ] = 2 and [

2
Θ(1)] = [

1
Θ(2)] = 3.

So, the tools used in the proof of Proposition 4.3 (i.e., theorems 2.12 and 3.14)

do not work for invalidating Θ. Similar considerations are in order in the case
of Proposition 4.4 if  ≥ 2. In other words, properties of wr-ms are insufficient
for invalidating -wffs of more complex structure than that in propositions 4.3

and 4.4 and, consequently, from now on, we shall need to rely on properties of

wr(1)-ms, wr(2)-ms and wr(3)-ms, as the case may be.

Proposition 4.5 (-wffs with  ≥ 3 and (( )) ≥ 1) Let M be a

wr(1)-ms,M0
 be a wr(2)-ms and Θ an -formula where  ≥ 3 and (( ))

≥ 1. Then, (1) if Θ is a -formula, then 2M
Θ; (2) if Θ is a -formula, then

2M0

Θ.

Proof. Assume the hypothesis of Proposition 4.5. (1) Θ is a -formula. Then,
Θ is of the form ( → ( )) → [2 → ( → ( → +1))] (On the

other hand, recall that  ∈  (2 ≤  ≤ )). Now, we have [
1
Θ(1)] = 2,

[Θ(1(( )))] ≥ 3, [Θ(+1)] ≥ 3 and for each  (2 ≤  ≤ ),
[Θ()] ≥ 3. So, Θ can be read as a formula of the form ( → ) → 

where  (i.e.,
1
(1)) does not share variables at the same depth in Θ with 

(i.e., ( )(1)) and  (i.e., 2 → ( → ( → +1))). Consequently,
2M

Θ by Theorem 3.18. (2) Θ is a -formula. Then, Θ is of the form

(( ) → ) → [2 → ( → ( → +1))] where  ∈  (2 ≤  ≤ ).
Now, as in case (1), Θ can be read as a formula of the form ( → ) → 

where  (i.e.,
0
(1)) does not share variables at the same depth with  (i.e.,

( )(1)) and  (i.e., 2 → ( → ( → +1))). Then, 2M0

Θ by

Theorem 3.23(1).

Proposition 4.6 (-wffs with  = 2, (( )) ≥ 1 and  6= ) LetM

be a wr(1)-ms, M0
 be a wr(2)-ms and Θ an -formula where  = 2 and

(( )) ≥ 1 and  6= . Then, (1) if Θ is a -formula, then 2M Θ; (2)
if Θ is a -formula, then 2M0


Θ.

Proof. Assume the hypothesis of Proposition 4.6. (1)Θ is a -formula. Suppose
that Θ is a -formula where 2 is of the form → ( ) (if 2 is of the form
( ) → , the proof is similar). Thus, Θ is of the form ( → ( )) →
(( → ( )) → ) with (( )) ≥ 1 and  6= . Then, [

1
Θ(1)] = 2,

[Θ(1(( )))] ≥ 3. Now, if  is , then [Θ()] = 2; and if  is ( ),
then [Θ()] ≥ 3. So, as in Proposition 4.5, Θ can be read as a formula

of the form ( → ) →  where ∆(Θ()Θ()) = ∆(Θ()Θ()) = ∅.
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Consequently, 2M
Θ by Theorem 3.18. (2) Θ is a -formula. In a similar way,

it can be shown that Θ can be read as a formula of the form ( → )→  where

∆(Θ()Θ()) = ∆(Θ()Θ()) = ∅. then 2M0

Θ by Theorem 3.23(1).

4.2 Blocking the routes to triviality

In what follows, we show how to invalidate members in the classes ,  and

 (cf. Definition 1.5). We begin by proving that any member in  is falsified

in no matter which wr(1, 2)-ms.

Theorem 4.7 (-wffs are falsified in any wr(1, 2)-ms) LetM be a wr

(1, 2)-ms and Θ ∈ . Then, 2M
Θ.

Proof. Assume the hypothesis of Theorem 4.7. Then, Θ is of the form (Θ)
1 → [2 → (→  → ))] (cf. Definition 1.5) where  ∈  (1 ≤  ≤ ).
Now, it can be shown that Θ is notM -valid as follows. (1) (( )) = 0.
By Proposition 4.3. (2) (( )) ≥ 1. (a)  = 1. By Proposition 4.4. (b)
 = 2. By Proposition 4.6. (c)  ≥ 3. By Proposition 4.5.
Next, we specify some very general circumstances under which members in

 and in  are falsified in wr(1, 2)-ms.

Theorem 4.8 (-wffs where  6= 1 or (( )) = 0) LetM be a wr(1,

2)-ms and Θ ∈ . If  6= 1 or (( )) = 0, then, 2M Θ.

Proof. Assume the hypothesis of Theorem 4.8. Now, Θ is a formula of the form
(Θ) 1 → [2 → ( → ( → ( )))] (cf. Definition 1.5) where  ∈ 
(1 ≤  ≤ ). Then Θ can be falsified inM as follows. (1) (( )) = 0. By
Proposition 4.3. (2)  6= 1. We can suppose (( )) ≥ 1 (if (( )) =
0, then the proof follows by case (1)). (a)  = 2. By Proposition 4.6. (b)  ≥ 3.
By Proposition 4.5.

Theorem 4.9 (-wffs where  6= 2 or (( )) = 0) LetM be a wr(1,

2)-ms and Θ ∈ . If  6= 2 or (( )) = 0, then, 2M Θ.

Proof. We recall that Θ is of the form (cf. Definition 1.5) (Θ) 1 → [2 →
(→ ( → ))]. Then, the proof is similar to that of Theorem 4.8 by using

now Proposition 4.3, Proposition 4.4 and Proposition 4.5.

Now, we proceed into the falsification of members in (cf. Definition 1.5).

Proposition 4.10 (-wffs of the form → (( )→ )) Let M be a

wr-ms and Θ be a member of  of the form (Θ)  → (( ) → ). Then,
2M Θ.

Proof. Immediate by Theorem 2.12: ∆(Θ()Θ(( )→ ) = ∅.
Proposition 4.11 (-wffs of the form ( )→ (→ ) and (( )) = 0)
LetM be a wr-ms and Θ be a member of  of the form (Θ) ( )→ (→
). If (( )) = 0, then, 2M Θ.
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Proof. Assume the hypothesis of Proposition 4.11. Then, [Θ(( ))] = 1
but [Θ(→ )] = 2. So, 2M

Θ by Theorem 2.12.

Proposition 4.12 (-wffs of the form ( )→ (→ ) and (( ))  1)
LetM be a wr(2, 3)-ms and Θ be a member of  of the form (Θ) ( )→
(→ ). If ( ) is a positive formula (i.e., a wff in which negation does not
appear –Definition 1.7) such that (( ))  1, then, 2M

Θ.

Proof. Assume the hypothesis of the Proposition 4.12 and notice that [Θ(→
)] = 2. Then, Θ is falsified in M as follows. (1) ( ) is of the form
( → ) → ( → ). Then, [Θ(( ))] ≥ 3 and the proof follows by
Theorem 2.12. (2) ( ) is of the form ( → ) where () = 0. Then
() ≥ 1 and thus, [Θ()] ≥ 3. So, Θ is falsified by using Theorem

3.23(1). (3) ( ) is of the form  →  where () = 0. Then, () ≥ 1,
and thus, [Θ()] ≥ 3. So, Θ is falsified by using Theorem 3.28(1).

Leaning on propositions 4.10, 4.11 and 4.12, we have:

Theorem 4.13 (Cases when  are falsified in wr(2, 3)-ms) LetM

be a wr(2, 3)-ms and Θ ∈ . Then, 2M Θ if (1) Θ is of the form  →
(( ) → ); (2) Θ is of the form ( ) → ( → ) and ( ) is a positive
formula and (( )) 6= 1.

Proof. Assume the hypothesis of Theorem 4.13. Case (1). The proof follows

by Proposition 4.10. Case (2). The proof follows by Proposition 4.11 and

Proposition 4.12.

Now, let us note the following remarks.

Remark 4.14 (General schemes not falsified) The general schemes that fol-

low have not been falsified in any of the wr-ms defined: (1) -wffs where  = 1
and (( )) ≥ 1; (2) -wffs where  = 2 and (( )) ≥ 1; (3) -

wffs of the form ( )→ (→ ) where (( )) = 1.

Remark 4.15 (Routes to triviality still open) So, the following routes to

triviality in Rogerson and Restall Theorem are still open (cf. Theorem 3 in

[17]; cf. Theorem 1.6 above). Let , ,  be provable in a logic S (cf. De-

finition 1.2). Then, NC trivializes S if one of the following is the case where

(( )) = 1,  is of the form ( )→ (→ ) and  = 1 in  and  = 2
in : (1)  ∈  and  ∈; (2)  ∈  and  ∈.

In the rest of this section, we shall block the routes (1) and (2) in Remark

4.15 by showing:

1. Let  ∈  where  = 1. If ( ) is a positive formula and (( )) =
1, then  is falsified in any wr(2, 3)-ms.

2. Let ∈  where  = 2. If ( ) is a positive formula and (( )) =
1, then  is falsified in any wr(1, 2, 3)-ms.
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Proposition 4.16 (Blocking route (a)) LetM be a wr(2, 3)-ms and Θ ∈
 where  = 1 and ( ) is a positive formula such that (( )) = 1.
Then, 2M Θ.

Proof. Assume the hypothesis of Proposition 4.16. Then, Θ is either (Θ) (→
( )) → ( ) or (Θ) (( ) → ) → ( ). Now, [Θ(

1

( ))] =

[Θ(
1

( ))] = 3; [Θ(
2

( ))] = [Θ(
2

( ))] = 2, and, finally,

[
1
Θ] = [

0
Θ(1)] = 2. Next, we show that Θ and Θ are falsified in

M . (1) Θ is Θ. Then, 2M Θ by Theorem 3.23 (1). (2) Θ is Θ. As
(( )) = 1, then ( ) is of the form  →  and so, Θ is of the form
[( → )→ ]→ ( → ). Then, 2M Θ by Theorem 3.28 (1).

Proposition 4.17 (Blocking route (b)) LetM be a wr(1, 2, 3)-ms and Θ
∈  where  = 2 and ( ) is a positive formula such that (( )) = 1.
Then, 2M

Θ.

Proof. Assume the hypothesis of Proposition 4.17. Then, Θ is of one of the fol-
lowing forms: (Θ) (→ ( ))→ ((→ ( ))→ ); (Θ) (→ ( ))→
((( ) → ) → ); (Θ) (( ) → ) → (( → ( )) → ); (Θ)
(( ) → ) → ((( ) → ) → ). Now, bearing in mind that () = 0
and (( )) = 1, Θ is shown to be notM -valid as follows. Case (1). Θ is
Θ or Θ. Then, Θ is falsified by Theorem 3.21. Case (2). Θ is Θ. then, Θ is
falsified by Theorem 3.23 (2). Case 3. Θ is Θ. Then, Θ is falsified by Theorem
3.28 (2).

Finally, we record the results obtained in the following theorem.

Theorem 4.18 (The routes to triviality, blocked) (1) Let  be defined

from any ( )-wff (cf. Definition 1.5). Then, if  ∈ , 2M  for any

wr(1, 2)-msM . (2) Let ,  and  be defined from a positive ( )-wff
(cf. Definition 1.5, Definition 1.7); and let  ∈ ,  ∈  and  ∈.Then,

2M  ∧, 2M  ∧ for any wr(1, 2, 3)-msM .

Proof. (1) Immediate by Theorem 4.7. (2) By theorems 4.8, 4.9, 4.13 and

Propositions 4.16 and 4.17 (cf. remarks 4.14 and 4.15).

5 Concluding remarks

We end the paper with some concluding remarks on the results obtained and

some observations on further research to develop from them.

1. Firstly, notice that Rogerson and Restall’s routes are only some particular

instances of the set of general schemes falsified by one or another of the

wr-ms defined in the paper (cf. Remark 3.30). To take an example of a

scheme not belonging to any of the classes in Definition 1.5, consider the

Generalized Modus Ponens Axiom (gMPa) [ ∧ ( → )]
→  where
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→  is an -formula with 1   being the same wff . In [3] (pp.

72-73), Brady has shown that gMPa causes Curry’s Paradox under the

same circumstances as the Contraction Law W does. But in [14] (paper

on which the present one is based), it is proved that gMPa is falsifiable

in any wr-ms by simply using Lemma 3.11. So, a future line of research

may be to use the theorems in Section 3 in order to falsify other general

schemes causing Curry’s Paradox but not comprehended in the classes

recorded in Definition 1.5 (by the way, Rogerson and Restall suggest a

similar course for furthering their own work, and the Modus Ponens Axiom

([ ∧ (→ )]→ ) is one of the theses remarked).

2. There are other (maybe many) wr-ms than those introduced by us “wait-

ing” to be defined. Consider, for example, the wff (X) [( → ) →
] → [( → ) → ]. X is not falsifiable in any of the general wr-

ms defined above, but it is falsified in any wr(1, 2)-ms with the added

clause →(   ) =  . Proceed as follows. Assign  to
1
,

3
; 

to
2
,

4
 and  ( ∈ 2) to . On the other hand, notice that X is re-

lated to Peirce’s Law (PL). For example, PL is immediate from X, the

Permutation rule  → ( → ) ⇒  → ( → ), Restricted as-
sertion ( → ) → [[( → ) → )] → ] and Dummett’s axiom
(→ ) ∨ ( → ).

3. Leaving aside Rogerson and Restall’s routes, the only schemes not falsi-

fied in some of the wr-ms defined above are the following (cf. Remark

4.14, Proposition 4.16, Proposition 4.17; ( ) is a positive formula):
(a) -wffs where  = 1 and (( ))  1; (b) -wffs where  = 2
and (( ))  1; (c) -wffs of the form ( ) → ( → ) where
(( )) = 1.

Now, as it was noted in the introduction of the paper, wffs in (c) are not

generally falsifiable unless we are willing to falsify some theses as the self-

identity axiom→ . But theses in (a) and (b) are, however, falsifiable in

most cases (actually, we have not found a particular instance not falsifiable

in any w(1, 2, 3)-ms). So, let us briefly show how to proceed in general

in order to falsify wffs in (a) and (b). We shall analyze the situations

concerned in case (a) (those in (b) are treated similarly).

4. -wffs where  = 1 and (( ))  1.

Let Θ ∈  with  = 1 and (( ))  1. Then, ( ) is of one
of the following forms: (a) ( → ) → ( → ); (b) ( → ) → 

with () = 0; (c)  → ( → ) with () = 0. And we have to
consider the following subcases. Θ is: (ai) ( → ( )) → ( ); (aii)
(( ) → ) → ( ); (bi) [ → [( → ) → ]] → [( → ) → ];
(bii) [[( → ) → ] → ] → [( → ) → ]; (ci) [ → ( → )] →
]→ [→ ( → )]; (cii) [→ [ → ( → )]]→ [→ ( → )].
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Case (ai): Assign  to
1
(1) and  ( ∈ 2) to the rest of the variables

in Θ. Then, Θ is falsified in any wr(1)-ms by Theorem 3.18.

Case (aii): Assign  to
0
(1) and  ( ∈ 2) to the rest of the variables

in Θ. Then, Θ is falsified in any wr(2)-ms by Theorem 3.23(1).

Case (bi): Assign  to
1
(1) and to all the variables in

0
(Θ) and 

( ∈ 2) to the rest of the variables in Θ. Then, it is easy to see that Θ
is falsified in any wr(1)-ms (by Theorem 3.23(1)).

Case c(i): Assign  to
0
(1) and to all the variables in

0

(Θ) and ( ∈ 2)
to the rest of the variables in Θ. Then, it is easy to see that Θ is falsified
in any wr(2)-ms.

Cases (bii) and (cii) are eventually shown falsifiable when pursuing with

the analysis of the structure of ,  and . We propose an example.

Suppose, for instance, that () ≥ 1 and ,  and  are positive

formulas; and let  be a wr(3)-ms. Assign, then, 0 to  and  to the rest
of the variables in Θ. It is easy to show that this particular instance of bii
is not valid in  .

Deep relevant logics have been employed by Brady in [7], or, recently, by

Weber (cf. e.g., [19]) to build non-trivial naive set theories. Now, these logics

(and many others) are among those verified by the wr-ms blocking the routes

to triviality in Theorem 1.6 as well as many other routes, as it has been pointed

out above. In this sense, we hope that the results in this paper may be of some

use in establishing non-triviality results given that mere verification by a wr-

ms of the propositional logic concerned guarantees that the standard routes to

triviality are blocked; and given that the spectra of logics defined by each wr-ms

intersects the range of logics for naive set theory amazingly extended by Brady

in [8] a few months ago.

A Appendix 1: Some relevant and deep relevant

logics

The following logics are formulated in the propositional language described in

Definition 1.1. Firstly, we shall define Routley and Meyer’s basic logic B (cf.

[18], Chapter 4). The logic B can be axiomatized with the following axioms and

rules

Axioms:

a1. → 

a2. ( ∧)→  / ( ∧)→ 

a3. [(→ ) ∧ (→ )]→ [→ ( ∧ )]
a4. → ( ∨) /  → ( ∨)
a5. [(→ ) ∧ ( → )]→ [( ∨)→ ]
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a6. [ ∧ ( ∨)]→ [( ∧) ∨ ( ∧)]
a7. → ¬¬
a8. ¬¬→ 

Rules

Adjunction (Adj)  &  ⇒  ∧
Modus Ponens (MP)  & →  ⇒ 

Suffixing (Suf) →  ⇒ ( → )→ (→ )

Prefixing (Pref)  →  ⇒ (→ )→ (→ )

Contraposition (Con) →  ⇒ ¬ → ¬
Then, we shall consider the extensions of B defined by adding to it some

of the following axioms and rules (notice that a36 and a37 are not classical

tautologies).

a9. ( → )→ [(→ )→ (→ )]

a10. (→ )→ [( → )→ (→ )]

a11. [(→ )→ ]→ 

a12. → [(→ )→ ]

a13. [→ (→ )]→ (→ )

a14. → (→ )

a15. (→ )→ [→ (→ )]

a16. ( → )→ (→ )

a17. (→ )→ (→ )

a18. [(→ )→ ]→ 

a19. [(→ ) ∧ ( → )]→ (→ )

a20. [(→ ) ∧]→ 

a21. [→ ( → )]→ [( ∧)→ ]

a22. (→ )→ [→ ( ∧)]
a23. (→ )→ [( ∧ )→ ( ∧)]

a24. (→ )→ [( ∨)→ ]

a25. (→ )→ [( ∨ )→ ( ∨ )]
a26. (→ ) ∨ ( → )

a27.  ∨ (→ )

a28.  ∨ ¬
a29. ¬( ∧ ¬)
a30. (→ )→ (¬ → ¬)
a31. (→ ¬)→ ¬
a32. ( ∧ ¬)→ ¬(→ )

a33. [(→ ) ∧ ¬)]→ ¬
a34. [(→ ) ∧ (→ ¬)]→ ¬
a35. ¬ ∨ (→ )

a36.  ∨ ¬(→ )

a37. ¬ ∨ ¬(→ )

Rules

Assertion (Asser) ⇒ (→ )→ 

Specialized reductio (sr) ⇒ ¬(→ ¬)
Counterexample (Cnt)  ∧ ¬ ⇒ ¬(→ )

Disjunctive Modus Ponens (MPd)  ∨ &  ∨ (→ )⇒  ∨
Disjunctive Suffixing (Sufd)  ∨ (→ )⇒  ∨ [( → )→ (→ )]
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Disjunctive Prefixing (Prefd)  ∨ ( → )⇒  ∨ [(→ )→ (→ )]

Disjunctive Contraposition (Cond)  ∨ (→ )⇒  ∨ (¬ → ¬)
Disjunctive Assertion (Asserd)  ∨⇒  ∨ [(→ )→ ]

Disjunctive specialized reductio (srd)  ∨⇒  ∨ ¬(→ ¬)
Disjunctive counterexample (Cntd)  ∨ ( ∧ ¬)⇒  ∨ ¬(→ )

Meta-rule Summation (MRs) ⇒  ⇒  ∨⇒  ∨

Deep relevant extensions of B are defined as follows:

DW: it is the result of substituting the rule Con for the corresponding axiom

a30.

DJ: DW plus a19.

DK: DJ plus a28.

DR: DJ plus the rule sr.

Each of the deep relevant logics defined can “deep-relevantly” be extended

with the metarule MRs.

Next, standard relevant logics can be defined as follows (the rules Suf and

Pref of DW are not independent now).

TW: DW plus a9 and a10.

T: TW plus a13 and a31.

E: T plus Asser.

R: T plus a12 (a31 is not independent).

RM: R plus a14.

TW is Contractionless Ticket Entailment; T is Ticket Entailment; E, Logic

of Entailment; R, Logic of Relevant Conditional, and finally, RM is R-Mingle

(we remark that RM lacks the vsp: in RM the conditional → is not actually a

relevant conditional. Cf. [1] and [18] about the logics defined above).

B Appendix 2: Variations on Meyer’s Crystal

lattice CL

In this appendix, we display particular wr-matrices upon which wr-model struc-

tures can be defined as indicated in Section 3. We exemplify each one of the

wr-matrices considered in sections 2 and 3. We begin by recalling, for definite-

ness, the notion of a “logical matrix” as well as the standard notions related to

it (in case a tester is needed, the reader can use that in [10]).

Definition B.1 (Logical matrices) A logical matrix M is a structure ( 

→ ∧ ∨ ¬) where (1)  is a set; (2)  and  are non-empty subsets of 

such that  ∪  =  and  ∩  = ∅; (3) → ∧ and ∨ are binary functions
(distinct from each other) on  and ¬ is a unary function on .

Remark B.2 (On the set  ) The set  has been remarked in Definition B.1

only because it eases the definition of “weak relevant matrices” and “weak rele-

vant model structures”.
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In addition to Definition B.1 we set (cf. Definition 1.1):

Definition B.3 (Verification, Falsification) Let M be a logical matrix and

 a wff. (1) M verifies  iff for any assignment, , of elements of  to

the propositional variables of , () ∈  . M falsifies  iff M does not

verify . (2) If 1   ⇒  is a rule of derivation of a logic S, M verifies

1  ⇒  iff for any assignment, , of elements of  to the variables

of 1  , if (1) ∈   () ∈  , then () ∈  . M falsifies

1  ⇒  iff M does not verify it. (3) Let S be a propositional logic. M

verifies S iff M verifies all axioms and rules of derivation of S.

The matrices to follow (except the last one) can be considered as variations

on the conditional characteristic of Meyer’s Crystal lattice CL (wr-matrices of

a different structure are displayed in [13] and [15]). The tables for ∧, ∨ and ¬
are as follows (all values but 0 are designated). The structure of all matrices is:

Diagram 1

∧ 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 1 1 1 1

2 0 1 2 1 2 2

3 0 1 1 3 3 3

4 0 1 2 3 4 4

5 0 1 2 3 4 5

∨ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 1 2 3 4 5

2 2 2 2 4 4 5

3 3 3 4 3 4 5

4 4 4 4 4 4 5

5 5 5 5 5 5 5

¬
0 5

1 4

2 2

3 3

4 1

5 0

The tables for the conditional are:

1

→ 0 1 2 3 4 5

0 5 5 5 5 5 5

1 0 1 2 3 4 5

2 0 0 2 0 2 5

3 0 0 0 3 3 5

4 0 0 0 0 1 5

5 0 0 0 0 0 5

2

→ 0 1 2 3 4 5

0 5 5 5 5 5 5

1 0 1 2 3 4 5

2 0 0 2 0 4 5

3 0 0 0 3 4 5

4 0 0 0 0 4 5

5 0 0 0 0 0 5
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3

→ 0 1 2 3 4 5

0 5 5 5 5 5 5

1 0 5 5 5 5 5

2 0 0 2 0 2 2

3 0 0 0 3 3 3

4 0 0 0 0 1 1

5 0 0 0 0 0 1

4

→ 0 1 2 3 4 5

0 1 1 2 3 4 5

1 0 1 2 3 4 5

2 0 0 2 0 4 5

3 0 0 0 3 4 5

4 0 0 0 0 4 5

5 0 0 0 0 0 5

5

→ 0 1 2 3 4 5

0 1 1 2 3 4 5

1 0 1 2 3 4 4

2 0 0 2 0 2 2

3 0 0 0 3 3 3

4 0 0 0 0 1 1

5 0 0 0 0 0 1

6

→ 0 1 2 3 4 5

0 1 1 2 3 4 5

1 0 1 2 3 4 5

2 0 0 2 0 2 5

3 0 0 0 3 3 5

4 0 0 0 0 1 5

5 0 0 0 0 0 5

7

→ 0 1 2 3 4 5

0 5 5 5 5 5 5

1 0 1 2 3 4 4

2 0 0 2 0 2 2

3 0 0 0 3 3 3

4 0 0 0 0 1 1

5 0 0 0 0 0 1

We now introduce Matrix 8. The tables are as follows (all values but 0 are
designated):

8

→ 0 1 2 3 ¬
0 1 3 3 3 3

1 0 1 2 3 1

2 0 0 2 3 2

3 0 0 0 1 0

∧ 0 1 2 3

0 0 0 0 0

*1 0 1 1 1

*2 0 1 2 2

*3 0 1 2 3

∨ 0 1 2 3

0 0 1 2 3

*1 1 1 2 3

*2 2 2 2 3

*3 3 3 3 3

We record the theses and the rules (in the preceding appendix) verified by

each matrix. (It has to be understood that the theses and rules omitted are

falsified.)

Matrix 1 (1): Meyer’s Crystal lattice CL, CL. Meyer’s CL is a sim-
plification of Belnap’s matrix 0 used in [2] for proving for the first time that

the logic of Entailment E has the vsp ( is also used in [1] and in [18], and it

is axiomatized as well asCL, in [6]). CL verifies relevant logic R (so, it verifies

the logics TW, T and E (cf. Appendix 1)). CL verifies all rules in Appendix

1 and a9-a13, a19-a21, a27-a35. CL is a wr(1, 2, 3)-matrix.

Matrix 2 (2): RMO. RMO is a simplification of the eight-element

tables used in [11] (see also [12]) to prove that the logic RMO has the vsp.
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The logic RMO is axiomatized by (1) changing a30 for the corresponding rule,

Con, in the formulation of R and (2) adding the axiom “mingle” (a14). RMO

verifies all rules in Appendix 1 and a9-a15, a19-a21, a27-a29, a31-a35. RMO

is a wr(1, 2)-matrix (it is not a wr(3)-matrix).

Matrix 3 (3): Fac . Fac abbreviates “Matrix Factor”. It is used for

defining a wr-ms verifying some deep relevant extensions of B with the axiom

“Factor” (a23) and related theses such as a22, in [16]. Fac verifies all extensions

of B with any selection of the following axioms and rules: a13, a17, a19, a20,

a21, a22, a23, a27, a28, a29, a33, a35, a37, MPd, Sufd, Prefd, Cond and MRs.

Fac is a wr(1)-matrix (it is neither a w(2)-matrix, nor a wr(3)-matrix).

Matrix 4 (4): SUM . SUM abbreviates “Matrix Summation”. It is used

in [16] for defining a wr-ms verifying some deep relevant extensions of B with

the axiom “Summation” (a25) and related theses such as a24. SUM verifies all

extensions of B with any selection of the following axioms and rules: a11, a13,

a14, a15, a16, a18, a19, a20, a21, a24, a25, a27, a28, a29, a31, a32, a33, a34,

a35, a36 and all rules in Appendix 1. SUM is a wr(2)-matrix (it is neither a

w(1)-matrix, nor a wr(3)-matrix).

Matrix 5 (5): SUM 0 . SUM 0 is a modification of SUM . 5 verifies
all extensions of DW (i.e., B plus a30 –cf. Appendix 1) with any selection of

the following axioms and rules: a11, a13, a18, a19, a20, a21, a27, a28, a29, a30,

a31, a32, a33, a34, a35, a36, a37, Asser, sr, Cnt, MPd, Sufd, Prefd and Cond,

Asserd, Srd, Cntd. 5 is interesting because it can be used for defining deep
relevant logics extending DR (cf. Appendix 1) with a36, a37 and other similar

theses that are not classical tautologies. SUM 0 is a wr(3)-matrix (it is neither

a w(1)-matrix, nor a wr(2)-matrix).

Matrix 6 (6): SUM 00 . SUM 00 is also a modification of SUM . 6
verifies all extensions of B with any selection of the following axioms and rules:

a11, a13, a18, a19, a20, a21, a27, a28, a29, a31, a32, a33, a34, a35, a36 and all

rules in Appendix 1. SUM 0 is a wr(2, 3)-matrix (it is not a w(1)-matrix).

Matrix 7 (7): Fac0 . Fac0 is a modification of Fac. 7 verifies all
extensions of B with any selection of the following axioms and rules: a11, a13,

a19, a20, a21, a27, a28, a29, a31, a32, 33, a34, a35, a37 and all rules in Appendix

1. Fac0 is a wr(1, 3)-matrix (it is not a w(2)-matrix).

Matrix 8 (8). 8 is a simple four-element matrix, which is a w(1, 2,
3)-matrix. Now, let B0 be the result of changing the rule Con (cf. Appendix 1)
for Con0 (→  & ¬ ⇒ ¬) in the axiomatization of B. Then, 8 verifies
all extensions of B0 with any selection of the following axioms and rules: a11,
a14, a15, a19, a20, a26, a27, a28, a29, a31, a32, a35, a36, Asser, sr, Cnt, MPd,

Sufd, Prefd, Asserd and the rule Con0d. Notice that the negation defined in8
is not a De Morgan negation: ¬(∨)→ (¬∧¬), (¬∨¬)→ ¬(∧)
and the rule Con are falsified (() = 1 and () = 2).
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