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Abstract The basic quasi-Boolean negation (QB-negation) expansions of rel-
evance logics included in Anderson and Belnap’s relevance logic R are defined.
We consider two types of QB-negation: H-negation and D-negation. The for-
mer one is of paraintuitionistic or superintuitionistic character, the latter one,
of dual intuitionistic nature in some sense. Logics endowed with H-negation
are paracomplete; logics with D-negation are paraconsistent. All logics defined
in the paper are given a Routley-Meyer ternary relational semantics.
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1 Introduction

Since the beginning of the relevance enterprise, relevance logicians have been
interested in exploring the frontiers of relevance logics (cf. [1], [2] and references
therein). A conspicuous instance of this interest is the ample space dedicated to
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the logic R-Mingle (RM) and its extensions in the first volume of Entailment,
which together with the second volume, can be considered as the “bible” of
relevance logic. But RM is not, strictly speaking, a relevance logic (it lacks
the “variable-sharing property”), although sometimes its 3-valued extension
is considered as the strongest member in the relevance logics family (cf. [3],
p. 276). Another example of the interest in the frontiers of relevance logics
shown by relevance logicians is patent in the investigations dedicated to the
possibility of introducing a Boolean negation in relevance logics (cf. [17], [18],
[25] and references in the last item). The present paper is based upon, and
extends, the aforesaid investigations.

As pointed out in [2], p. 349, “there are two conceptually distinct classes
of paradoxes of material implication” (cf. Definition 2.1 below on the logic
language used in the paper). The archetype of the first class (‘paradoxes of
consistency’) is the ‘E contradictione quodlibet’ (ECQ) axiom, (A∧−A)→ B.
The archetype of the second one (‘paradoxes of relevance’) is the ‘Verum e
quodlibet’ (VEQ) axiom, A→ (B → A). It came as a surprise that the former
class can be added to relevance logics without having the latter one in general.
In other words, it was totally unexpected that addition of Boolean negation
to relevance logics did not result in a collapse in classical or modal logics (cf.
[2], §65.1.2; [17], [18], [25], §4, and references in the last item).

Boolean negation (B-negation) can be introduced in a relevance logic L
by extending or expanding it. In the latter case, we add the classical clause
v(−A) = T iff v(A) 6= T together with the double negation elimination (DNE)
axiom, −−A→ A, and the rule antilogism (Ant), (A∧B)→ −C ⇒ (A∧C)→
−B. In the former one, it suffices to add to L the ECQ axiom formulated in
the vocabulary of L (cf. [25], §4). Let us focus on B-negation expansions of
relevance logics.

In [25], pp. 371-372, it is proven that the ECQ axiom, (A∧−A)→ B, and
the conditioned principle of excluded middle (CPEM) axiom, B → (A∨−A),
are theorems of any relevance logic including Routley and Meyer’s basic pos-
itive (i.e., negationless) logic B+ plus the rule Ant and the DNE axiom (cf.
Definition 2.4 below) but it would not be difficult to show that the proof pro-
vided by Routley et al. could be carried out within the weaker logic FDE+,
the positive fragment of Anderson and Belnap’s First degree entailment logic,
FDE (cf. [1]). Moreover, in Appendix II, it is proved that Ant and the DNE
axiom are derivable from FDE+ and the ECQ and CPEM axioms. Conse-
quently, relevance logics can be expanded with B-negation by adding Ant and
the DNE axiom or, equivalently, by introducing the ECQ and CPEM axioms.

The ECQ axiom can intuitively be seen as expressing the thesis that, given
a contradiction, any proposition follows. The CPEM axiom, in its turn, as stat-
ing that a proposition or its negation follows from any proposition whatsoever.
From the point of view of possible-worlds semantics, the ECQ axiom can be
interpreted as saying that all possible worlds are consistent (i.e., no possible
world contains a proposition and its negation). On the other hand, the CPEM
axiom would express that all possible worlds are complete (no possible world
lacks both a proposition and its negation). Thus, we see, the ECQ and CPEM
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axioms are the two pillars upon which B-negation can be built given such a
weak positive logic as FDE+.

This way of introducing B-negation in relevance logics suggests the defi-
nition of two families of quasi-Boolean negation (QB-negation) expansions of
relevance logics. One of them, paraintuitionistic or superintuitionistic in char-
acter, has the ECQ axiom, but not the CPEM axiom; the other one, dual
intuitionistic in a sense similar to da Costa’s C-systems (cf. [27]), has the
CPEM axiom, but not the ECQ axiom. Let us generally refer by H-negation
and D-negation to the former and the latter type of negation, respectively
(“H” stands for Heyting,“D”, for dual H-negation). The aim of this paper is
to define the basic classes of H-negation and D-negation, as well as the basic
combinations of both these classes. Next, to show how to expand any relevance
logic included in Anderson and Belnap’s logic of the relevant implication R
(cf. [1]) with all members in the classes of QB-negation defined. We remark
that the logics to be defined in the following pages are paracomplete w.r.t.
H-negation and paraconsistent w.r.t. D-negation (cf. Appendix II).

We note the term ‘quasi-Boolean algebra’ was used long ago to refer to
what nowadays is called ‘De Morgan algebras’ or ‘De Morgan lattices’ (cf.
[4]; [20], Chap. III, §3, p. 44; [11], p. 354). It is not currently used in the
relevance logic literature: it is not even mentioned in such works as [13] or
[14]. Moreover, even outside the relevance logic area ‘quasi-Boolean algebras’
seems to be used as a kind of tribute to the outstanding pioneering work of
the pre- and post- war Polish logic school to immediately substitute it by ‘De
Morgan lattices’ (cf., e.g., [10]). Thus, in principle, the use of the term ‘quasi-
Boolean’ we introduce and motivate in the preceding paragraph does not have
to cause confusion of any sort.

B-negation extensions or expansions of relevance logics are both of logical
and philosophical interest (cf. [25], pp. 376, ff.). For instance, the logic classical
R, KR, the result of extending R with the ECQ axiom plays a central role
in the undecidability proofs for relevance logics by Urquhart (cf. [2], §65 and
references therein). Or, to take another example, in [19], Meyer et al. show how
the rule disjunctive syllogism becomes inadmissible if Brady’s fundamental 4-
valued relevance logic BN4 is expanded with B-negation. It is to be expected
that QB-negation extensions and expansions of relevance logics (not considered
in the literature, as far as we know) will have a similar logical and philosophical
interest.

All QB-negation expansions of relevance logics defined in the paper are
endowed with a Routley-Meyer ternary relational semantics (RM-semantics).
RM-semantics was introduced in the early 70s of the past century (cf. [25], [6],
[12] and references therein). It was particularly defined for interpreting rele-
vance logics, but it was soon noticed that an ample class of logics not belonging
to the relevance logics family could also be characterized by this semantics (cf.
[25], [6], [5], [12]). There are essentially two types of RM-semantics: (1) RM-
semantics with a set of designated points w.r.t. which validity of formulas is
decided (RM1-semantics) and (2) RM-semantics without a set of designated
points, where validity of formulas is decided w.r.t. the set of all points (RM0-
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semantics). As for RM1-semantics, we have reduced RM1-semantics, where
the set of designated points is reduced to a singleton, and unreduced RM1-
semantics. It is to be remarked that it is not possible to give an RM-semantics
to logics weaker than (not containing) Sylvan and Plumwood’s minimal logic
BM (cf. [28]). QB-negation expansions of relevance logics defined in what fol-
lows are given an unreduced RM1-semantics. In Appendix II, we briefly discuss
to what extent it is possible to define reduced RM1-semantics.

Concerning the type of models this RM1-semantics is composed of, we note
that H-negation is interpreted with models whose elements are all consistent
but not necessarily complete, while in the case of D-negation exactly the re-
verse obtains: the elements in the models are all complete but not necessarily
consistent. In this sense, the RM1-semantics presented in this paper is differ-
ent from standard RM-semantics for relevance logics where the elements in
the models can be inconsistent, incomplete or both (cf. Remark 6.7).

The paper is organized as follows. In §2, we consider three types of De
Morgan negation (DM-negation) for expanding positive (i.e., negationless) rel-
evance logics: minimal, basic and strong DM-negation. It is shown that these
three types of DM-negation are independent from each other within the con-
text of the positive fragment of the aforementioned logic RM3. In §3, we define
four types of H-negation and two types of D-negation for expanding any rel-
evance logic including Sylvan and Plumwood’s minimal De Morgan logic BM

and included in Anderson and Belnap’s logic of the relevant implication R.
In addition to the six QB-negations considered in §3, in §4 we introduce four
additional ones defined from combining one H-negation and one D-negation.
Then, given any relevance logic L including BM and included in R, we estab-
lish the relations the different QB-negation expansions of L maintain to each
other and prove that none of them includes the result of expanding R with B-
negation. In §5, an unreduced RM1-semantics is given for the expansion of all
relevance logics defined in §2 with any of the ten QB-negations introduced in
§5. Actually, it is shown how to define an unreduced RM1-semantics for the ex-
pansions of any relevance logic L with any of the aforesaid ten QB-negations,
provided it is possible to endow L with an unreduced RM1-semantics. The
section is ended by proving that all the logics defined are (weakly) sound
w.r.t. their corresponding RM1-semantics, whereas in the ensuing section (§6)
(weak) completeness is demonstrated by using a canonical model construc-
tion. The paper is ended with some concluding remarks (§7), where we point
out some suggestions on future work on the topic. We have added two appen-
dices displaying the proofs of some claims made throughout the paper or else
introducing some complementary material.

2 Three types of De Morgan negation

Firstly, we note the definitions of some preliminary notions as used in the
paper (of course, there are alternative definitions of these notions).
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Definition 2.1 (Language) The propositional language consists of a denu-
merable set of propositional variables p0, p1, ..., pn, .., and the following connec-
tives→ (conditional), ∧ (conjunction), ∨ (disjunction), − (Boolean negation),

∼ (De Morgan negation), ¬ (quasi-Boolean negation of type H),
•¬ (quasi-

Boolean negation of type D). The biconditional (↔) and the set of wffs are
defined in the customary way. A,B etc. are metalinguistic variables.

Definition 2.2 (Logics) A logic L is a structure (L, `L) where L is a propo-
sitional language and `L is a (proof-theoretical) consequence relation defined
on L by a set of axioms and a set of rules of derivation. The notions of ‘proof’
and ‘theorem’ are understood as it is customary in Hilbert-style axiomatic
systems (Γ `L A means that A is derivable from the set of wffs Γ in L; and
`L A means that A is a theorem of L).

Definition 2.3 (Extensions and expansions) Let L and L′ be two propo-
sitional languages. L′ is a strengthening of L if the set of wffs of L is a proper
subset of the set of wffs of L′. Next, let L and L′ be two logics built upon
the propositional languages L and L′, respectively. Moreover, suppose that all
axioms of L are theorems of L′ and all primitive rules of inference of L are
provable in L′. Then, L′ is an extension of L if L and L′are the same propo-
sitional language; and L′ is an expansion of L if L′ is an strengthening of L.
An extension L′ of L is a proper extension if L is not an extension of L′.

The minimal positive logic representable in RM-semantics is Routley and
Meyer’s basic positive logic B+. The logic B+ is defined as follows (cf. [25] and
references therein).

Definition 2.4 (The logic B+) The logic B+ can be formulated with the
following axioms and rules of inference(⇒ and & are metalinguistic symbols
for ‘if... then...’ and ‘and’, respectively):

– Axioms: (A1) A → A; (A2) (A ∧ B) → A / (A ∧ B) → B; (A3) [(A →
B) ∧ (A → C)] → [A → (B ∧ C)]; (A4) A → (A ∨ B) / B → (A ∨ B);
(A5) [(A → C) ∧ (B → C)] → [(A ∨ B) → C]; (A6) [A ∧ (B ∨ C)] →
[(A ∧B) ∨ (A ∧ C)]

– Rules of inference: Adjunction (Adj): A & B ⇒ A ∧ B; Modus Ponens
(MP): A→ B & A⇒ B; Suffixing (Suf): (A→ B)⇒ (B → C)→ (A→
C); Prefixing (Pref): (B → C)⇒ (A→ B)→ (A→ C)

Consider now the following axioms and rule: (A7) (∼ A∧ ∼ B)→ ∼ (A ∨
B); (A8)∼ (A∧B)→ (∼ A∨ ∼ B); (A9) A→∼∼ A; (A10)∼∼ A→ A; (A11)
(A→ B)→ (∼ B → ∼ A); Contraposition (Con∼) A→ B ⇒ ∼ B → ∼ A.

Given a positive relevance logic L+, there are essentially three ways of
expanding it with a De Morgan negation. That is, there are essentially three
types of De Morgan negation, which are axiomatized as follows:

1. Minimal De Morgan negation (Mm): L+ plus A7, A8 and Con∼.
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2. Basic De Morgan negation (Mb): L+ plus A9, A10 and Con∼.
3. Strong De Morgan negation (Ms): L+ plus A9, A10 and A11.

Let L+ be a positive relevance logic equivalent to or including B+. By LMm

(resp., LMb, LMs), we mean the result of adding minimal (resp., basic, strong)
De Morgan negation to L+. The minimal relevance logics displaying Mm, Mb

and Ms-type negations are BM, B and DW, respectively, which are defined as
follows. (We note that strong De Morgan negacion Ms is the original negation
of best known relevance logics such as T, E or R. Cf. Definition 2.7 below.)

Definition 2.5 (BM, B and DW) Sylvan and Plumwood’s minimal De
Morgan logic BM is axiomatized by adding A7, A8 and Con∼ to B+ (cf. [28]).
Then, Routley and Meyer’s basic logic B is B+ plus A9, A10 and Con∼.
Finally, the logic DW is the result of changing Con∼ for A11 in B (cf.[25],
Chapter 4 on B and DW).

As noted below, DW is an extension of B, in its turn an extensions of BM.
The De Morgan laws (T1) ∼ (A ∨B)↔ (∼ A∧ ∼ B) and (T2) ∼ (A ∧B)↔
(∼ A∨ ∼ B) are theorems of BM (cf. [28]).

In the following proposition it is shown that the three types of De Morgan
negation are different from each other within the context of the positive (i.e.,
negationless) fragment of RM3, RM3+, sometines considered as the strongest
member in the relevance logic family (cf. e.g., [3], p. 276). RM3, which is
defined below, is not a relevance logic strictly speaking, since it lacks the
‘variable-sharing property’. Nevertheless, it is a ‘quasi-relevant logic’ —cf. [1],
[22]).

Proposition 2.6 (Mm, Mb and Ms are different from each other) Let
L+ be a relevance logic included in the positive fragment of RM3, RM3+. Then,
(1) LMs is not included in LMb (LMb is not a proper extension of LMs); (2)
LMb is not included in LMm.

Proof We use the sets of truth-tables in Appendix I. In particular, (1) follows
by t1, and (2) by t2.

Definition 2.7 (Main relevance logics) Consider now the following ax-
ioms: (b1) [(A→ B) ∧ (B → C)]→ (A→ C); (b2) (A→ B)→ [(B → C)→
(A → C)]; (b3) (B → C) → [(A → B) → (A → C)]; (b4) [A → (A → B)] →
(A→ B); (b5) [[(A→ A) ∧ (B → B)]→ C]→ C; (b6) A→ [(A→ B)→ B];
(b7) A→ (A→ A); (b8) A ∨ (A→ B).

The main relevance logics are: Brady’s DJ, Ticket Entailment (T), Entail-
ment (E), Relevance (R), R-Mingle (RM) and the three-valued extension of
RM, RM3. These logics are axiomatized as follows (cf. [1], [25]): DJ: DW plus
b1; T: DW plus b2, b3 and b4 (b1 is not independent); E: T plus b5; R: T
plus b6; RM: R plus b7; RM3: RM plus b8.

These logics are related to each other as summarized in the following dia-
gram (for any L, L′, L → L′ means that L′ is a proper extension of L):
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Fig. 1 Diagram 1

But there are many other interesting relevance logics. For example, TW,
EW and RW, which are the result of dropping the contraction axiom, b4, from
T, E and R, respectively, or TWr and EWr, which are formulated by adding
the reductio axiom (A→ B)→ (∼ A∨B) to TW and EW, respectively (RWr
is equivalent to R). Of course, the so-called weak relevance logics are also worth
mentioning (cf. [9], [7]): in addition to DW and DJ, we have DK (DJ plus the
PEM axiom, A∨ ∼ A); DR (DK plus the reductio rule A ⇒ ∼ (A → ∼ A),
and DL (DK plus the reductio axiom (A→∼ A)→∼ A). Finally, the logics C
and G referred to in [25], p. 286 are also worth mentioning. The logic C is the
result of adding the modus ponens axiom, [A ∧ (A → B)] → B to TW, while
G is axiomatized when adding A∨ ∼ A to B. Notice that it is a consequence
of Proposition 2.6 that there are Mm and Mb versions of all relevance logics
in Definition 2.7, as well as of those we have just referred to.

3 Four types of H-negation and two types of D-negation

Consider the following axioms and rules:

(A12) (¬A ∧ ¬B) → ¬(A ∨ B); (A13) ¬(A ∧ B) → (¬A ∨ ¬B); (A14)
C → [B → ¬(A ∧ ¬A)]; (A15) C → [(A ∧ ¬A) → B]; (A16) (A → B) →
(¬B → ¬A); (A17) A ∨ ¬A; (A18) ¬A →∼ A; (Contraposition —Con¬)
A→ B ⇒ ¬B → ¬A.

(A19) (
•¬A∧ •¬B)→ •¬(A∨B); (A20)

•¬(A∧B)→ (
•¬A∨ •¬B); (A21) C →

[B → (A∨ •¬A)]; (A22) C → [
•¬(A∨ •¬A)→ B]; (A23) (A→ B)→ (

•¬B → •¬A);

(A24) ∼ A→ •¬A; (Contraposition —Con
•¬) A→ B ⇒ •¬B → •¬A.

Given a relevance logic L, there are essentially four types of H-negation
and two types of D-negation, which are axiomatized as indicated in Defini-
tions 3.1 and 3.2. The structure of both H-negation and D-negation share a
common basis: De Morgan laws (A12, A13; A19, A20) and either the rule

contraposition (Con¬, Con
•¬) or the contraposition axiom (A16, A23). Then,

the characteristic axioms of H-negation (resp., D-negation) are A14 and A15
(resp., A21, A22), while A18 (resp., A24) relates De Morgan negation with
H-negation (resp., D-negation). It has to be remarked that A17, PEM, can be
added to H-negation without collapse into Boolean negation.

Definition 3.1 (Four types of H-negation) There are four types of H-
negation:

1. Basic H-negation (Hb): L plus A12 through A15, A18 and Con¬.
2. Strong H-negation (Hs): L plus A12 through A16 and A18.
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3. Superstrong Hb (SHb): L plus A12 through A15, A17, A18 and Con¬.
4. Superstrong Hs (SHs): L plus A12 through A18.

Definition 3.2 (Two types of D-negation) We have the following two
types of D-negation:

1. Basic D-negation (Db): L plus A19 through A22, A24 and Con
•¬.

2. Strong D-negation (Ds): L plus A19 through A24.

Let L be a relevance logic equivalent to or included in BM. By LHb, LHs,
LSHb and LSHs, we refer to the result of adding Hb-negation, Hs-negation,
SHb-negation and SHs-negation to L, respectively. By LDb and LDs, we refer
to the result of adding to L Db-negation and Ds-negation, respectively. (Notice
that L, in its turn, can be LMm, LMb or LMs, that is a positive relevance logic
including B+ expanded with a minimal, basic or strong De Morgan negation.)

We note (1) A12, A13 and Con¬ (resp., A19, A20 and Con
•¬) are needed in

order to define a Routley-Meyer semantics for H-negation (resp., D-negation)
(cf. Lemma 6.13 in §5). (2) A18 (resp., A24) relates De Morgan negation
and H-negation (resp., D-negation). (3) In the following section, we study (a)
the relations that the four types of H-negation maintain to each other; (b)
the relation that the two types of D-negation maintain to each other; (c) the
relation that De Morgan, H-negation and D-negation maintain in general.

Next, we prove some theses of BMHb and BMDb, as well as some facts on
the QB-axioms.

Remark 3.3 (De Morgan laws) Firstly, we note that the De Morgan laws are

provable, similaly as in BM: (T1a) ¬(A∨B)↔ (¬A∧¬B); (T1b)
•¬(A∨B)↔

(
•¬A ∧ •¬B); (T2a) ¬(A ∧B)↔ (¬A ∨ ¬B); (T2b)

•¬(A ∧B)↔ (
•¬A ∨ •¬B).

Proposition 3.4 (Some theses of BMHb and BMDb) BMHb (resp., BMDb)
is the result of adding to BM (cf. Definition 2.5) A12-A15, A18 and Con¬
(resp., A19-A22, A24 and Con

•¬). We have (T3) ¬(A∧¬A), (T4) ¬A∨¬¬A
and (T5) A→ ¬¬A are provable in BMHb; and (T6) A∨ •¬A , (T7)

•¬(A∧ •¬A)

and (T8)
•¬ •¬A→ A in BMDb.

Proof T3 (resp., T6) is immediate by A14 (resp., A21); T4 (resp., T7) follows
by T2a and T3 (resp., T2b and T6); finally, T5 (resp., T8) follows by using

(A∧¬A)→ B and B → ¬(A∧¬A) (resp., B → (A∨ •¬A) and
•¬(A∨ •¬A)→ B).

(Cf. Propositions B1 and B3 in Appendix II.)

Next, it is important to examine to what extent the QB-axioms are inde-
pendent from each other and from the ECQ and CPEM axioms. Generally, we
have:

1. A14 (resp. A22) is independent from A15 (resp., A21) within the context
of strong logics.

2. A15 (resp., A21) is independent from A14 (resp., A22) given the logic G
(cf. §2).
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3. The QB-axioms A14, A15, A21 and A22 are not derivable from the ECQ
and the CPEM axions, given the logic E (cf. §2).

Proposition 3.5 (Independence of A14 and A22) Let C be classical
propositional logic. A14 (resp., A22) is independent in the context of CHs

(resp., CDs). That is, A14 (resp., A22) is not derivable from C plus A12,
A13, A15, A16 and A18 (resp., A19-A21, A23 and A24).

Proof By the set of truth-tables t3 in Appendix I.

Proposition 3.6 (Independence of A14) A14 is independent in the con-
text of TSHs. That is, A14 is not derivable from T plus A12, A13, A15-A18
(the logic T is ticket entailment —cf. Definition 2.7).

Proof By the set of truth tables t6 in Appendix I.

Proposition 3.7 (Independence of A15 and A21) The logic G is B plus
the PEM axiom A∨ ∼ A (cf. §2). A15 (resp., A21) is independent in the
context of GSHb (resp., GDb). That is, A15 (resp., A21) is not derivable from

G plus A12-A14, A17, A18 and Con¬ (resp., A19, A20, A22, A24 and Con
•¬).

Proof By the sets of truth-tables t5 and t4 in Appendix I.

Proposition 3.8 (On the non-independence of QB-axioms) (a) A15
(resp., A21) is not independent in the context of DWHb (resp., DWDb). That
is, A15 (resp., A21) is derivable from DW plus A12-A14, A18 and Con¬
(resp., A19, A20, A22, A24 and Con

•¬) (cf. §2 on the logic DW). (b) A14 is
not independent in the context of ESHs. That is, A14 is derivable from E plus
A12, A13, A15-A18 (cf. Definition 2.7 on the logic of entailment E).

Proof (a) By Proposition B2. (b) By Proposition B3 (cf. Appendix II).

Proposition 3.9 (Unprovability of A14, A15, A21 and A22) Consider
Anderson and Belnap’s logic of entailment E (cf. Definition 2.7), and let EQB
(Quasi-Boolean E) be the result of adding A12, A13, A16-A20, A23, A24,

A→ ¬¬A,
•¬ •¬A→ A, the ECQ axiom (A ∧ ¬A)→ B and the CPEM axiom

B → (A∨ •¬A) to E. Then, A14, A15, A21 and A22 are not provable in EQB.

Proof By the set of truth-tables t7 in Appendix I.

Then, notice that the ECQ axiom, (A∧¬A)→ B (resp. the CPEM axiom

B → (A∨ •¬A)) is not sufficient for introducing H-negation (resp., D-negation)
in relevance logics equivalent to, or weaker than E supplemented with A12,

A13, A16 and A→ ¬¬A (resp., A19, A20, A23 and
•¬ •¬A→ A). Nevertheless,

we have:
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Proposition 3.10 (Provability of A14, A15, A21 and A22) Let DWa be
the logic axiomatized by adding the assertion axiom b6, A→ [(A→ B)→ B]
(cf. Definition 2.7) to DW. Then, A14 and A15 (resp. A21 and A22) are
provable from DWa plus A12, A13, A16, A → ¬¬A and the ECQ axiom

(A ∧ ¬A) → B (resp., A19, A20, A23,
•¬ •¬A → A and the CPEM axiom

B → (A ∨ •¬A)).

Proof (1) A15, C → [(A ∧ ¬A) → B], is provable by (A ∧ ¬A) → (C → B)
and C → [(C → B) → B]. Then A14, C → [B → (A ∧ ¬A)] follows by A15,
A16 and A→ ¬¬A. (2) The proof of A19 and A20 is similar.

Consequently, the ECQ axiom (A ∧ ¬A) → B (resp. the CPEM axiom

B → (A ∨ •¬A)) is sufficient for introducing H-negation (resp., D-negation)
in relevance logics including DWa plus A12, A13, A16 and A → ¬¬A (resp.,

A19, A20, A23 and
•¬ •¬A → A). However, notice that if A → ¬¬A (resp.,

•¬ •¬A → A) is not present, we need B → ¬(A ∧ ¬A) (resp.,
•¬(A ∨ •¬A) → B)

in addition.

Proposition 3.11 (∼,¬ and
•¬ are different from each other) Consider

the set of truth-tables t9 in Appendix I. This set verifies RM3 plus A12-A24,

but falsifies ∼ A→ ¬A and
•¬A→∼ A. Consequently, ∼,¬ and

•¬ are different
from each other within the context of RM3.

Proof For any propositional variable p and assignment v such that v(p) = 1,

we have v(∼ p→ ¬p) = v(
•¬p→∼ p) = 0.

4 Relating the QB-negations to each other and to DM-negations

In this section, by L we refer to any relevance logic equivalent to, or included in
Anderson and Belnap’s logic of the relevant implication R (cf. Definition 2.7).
On the other hand, LB is L plus Boolean negation, that is, the result of adding
the ECQ axiom (A∧−A)→ B and the CPEM axiom B → (A∨−A) to L, while
LSB is the result of adding the contraposition axiom (A→ B)→ (−B → −A)
to LB (notice that L can be equipped with a minimal, a basic or a strong De
Morgan negation).

We have the following facts:

Proposition 4.1 (LB ; LSB) The logic LB does not include LSB.

Proof By t8 in Appendix I.

Proposition 4.2 (LSHsDs ; LB) LSHsDs (i.e., L plus A12-A24) does not
include LB.

Proof By t9 in Appendix I.
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Proposition 4.3 (Relations between QB-negations) We have (the ex-
pressions in (1)-(5) below are read similarly as in Propositions 4.1 and 4.2):

1. LDs ; LHb

2. LHs ; LDb

3. LHsDs ; LSHb

4. LSHbDb ; LDs

5. LSHbDb ; LHs

Proof (1): t9; (2): t9; (3): t10; (4): t11; (5): t11.

Remark 4.4 (On LHsDb and LHbDs) MaGIC (cf. [26]) does not find truth-
tables verifying LHsDb (resp., LHbDs) and falsifying Ds (resp., Hs). On our
part, we have not found a proof of the inclusion of Ds (resp., Hs) in LHsDb

(resp., LHbDs). So, the question whether LHsDb (resp., LHbDs) is a proper
extension of LDs (resp., LHs) is left open.

Given Propositions 4.1-4.3 and Remark 4.4, we have 10 different QB-
negation expansions of a given relevance logic L: Hb, Db, Hs, Ds, SHb, SHs,
HbDb, SHbDb, HsDs and SHsDs. These expansions of L are related to each
other as shown in the following diagram (recall that L can have a minimal,
basic or strong De Morgan negation; cf. also Diagram 1).

Fig. 2 Diagram 2

5 RM-semantics for the QB-logics

In what follows, by an H-logic (resp., D-logic, HD-logic), we mean an expansion
of a relevance logic (including BM and included in R) with any of the H-
negations (resp., D-negations or both an H-negation and a D-negation) defined
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in §3. By the term “QB-logics”, we generally refer to the set of all H-logics,
D-logics and HD-logics. Given that all QB-logics are expansions of the logic
BM, we begin by defining EBM-models, models for expansions of logic BM.

Definition 5.1 (EBM-models) An EBM-model, M, is a structure with at
least the following items: (a) a setK and a subset of it, O; (b) a ternary relation
R and a unary operation ∗ defined on K subject at least to the following
definitions and postulates for all a, b, c, d ∈ K:

d1. a ≤ b =df ∃x ∈ O Rxab

d1′. a = b =df a ≤ b & b ≤ a
d2. R2abcd =df ∃x ∈ K(Rabx & Rxcd)

P1. a ≤ a
P2a. (a ≤ b & Rbcd)⇒ Racd

P2b. (a ≤ b & b ≤ c)⇒ a ≤ c
P2c. (d ≤ b & Rabc)⇒ Radc

P2d. (c ≤ d & Rabc)⇒ Rabd

P3. a ≤ b⇒ b∗ ≤ a∗

(c) a valuation relation � from K to the set of all formulas such that the
following conditions (clauses) are satisfied for every propositional variable p,
formulas A,B and a ∈ K:

(i). (a ≤ b & a � p)⇒ b � p

(ii). a � A ∧B iff a � A & a � B

(iii). a � A ∨B iff a � A or a � B

(iv). a � A→ B iff for all b, c ∈ K, (Rabc & b � A)⇒ c � B

(v). a �∼ A iff a∗ 2 A

Additional elements of M are the following: (1) unary operators ~ and ⊕
on K; (2) a set of semantical postulates Pj1, ..., Pjn.

If operator ~ (resp., ⊕) is added, the clause (vi) a � ¬A iff a~ 2 A (resp.,

(vii) a �
•¬A iff a⊕ 2 A) and the postulate a ≤ b ⇒ b~ ≤ a~ (P~).(resp.,

a ≤ b⇒ b⊕ ≤ a⊕ (P⊕)) have also to be added.
Structures of the form (O,K,R, ∗,�) satisfying d1, d1′, d2, P1, P2a, P2b,

P2c, P2d, P3 and clauses (i), (ii), (iii), (iv) and (v) are the basic structures and
in fact characterize the logic BM (they are labelled BM-models). Introduction
of additional postulates and/or the operator ~ and/or the operator ⊕ serve to
determine extensions and expansions of BM interpretable in unreduced RM1-
semantics.

Definition 5.2 (Truth in a class of EBM-models) Let a class of EBM-
models M be defined and M ∈ M. A formula A is true in M (in symbols,
�M A) iff x � A for all x ∈ O.
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Definition 5.3 (Validity in a class of EBM-models) Let a class of EBM-
models M be defined and M ∈ M. A formula A is valid in M (in symbols,
�M A) iff A is true in every M ∈M.

Lemma 5.4 (Hereditary Lemma) For any EBM-model, a, b ∈ K and for-
mula A, (a ≤ b & a � A)⇒ b � A.

Proof Induction on the length of A. The conditional case is proved with P2
and the negation cases are proved with P3, P~ and P⊕.

Lemma 5.5 (Entailment Lemma) Let a class of EBM-models M be de-
fined. For any formulas A,B, �M A → B iff (a � A ⇒ a � B for all a ∈ K)
in all M ∈M.

Proof From left to right (⇒) by P1; from right to left (⇐), by Lemma 5.4.

Let L be an EBM-logic and L-models be defined. Below, it is proved that
all theorems of BM are L-valid. Then, soundness of BM is a corollary of this
fact.

Proposition 5.6 (All theorems of BM are EBM-valid)
For any formula A, if `BM

A, then A is EBM-valid (i.e., valid in any class
of EBM-models).

Proof It can be found in [28].

Corollary 5.7 (Soundness of BM) For any wff A, if `BM
A, then �BM

A.

Proof Immediate by Proposition 5.6, since a BM-model is an EBM-model.

In what follows, we proceed to the soundness proofs of the QB-logics. The
basic notion is “corresponding postulate” (cp) (cf. [25], Chapter 4). We give a
corresponding postulate to each one of the axioms b1 through b8, A9 through
A11, A15 through A18, A21, A23 and A24. Then, in order to prove soundness,
these postulates are used as shown in Lemma 5.10. The section is ended with
the proof of soundness of the QB-logics. Firstly, QB-models are defined. Then,
soundness follows immediately from Definition 5.11 and Lemma 5.10.

Definition 5.8 (cp to b1-b8, A9-A11, A15-A18, A21, A23, A24) Be-
low, we provide postulates corresponding to each one of the axioms b1-b8,
A9-A11, A15-A18, A21, A23, A24.

Pb1. Rabc⇒ ∃x(Rabx & Raxc)

Pb2. R2abcd⇒ ∃x(Racx & Rbxd)

Pb3. R2abcd⇒ ∃x(Rbcx & Raxd)

Pb4. Rabc⇒ R2abbc

Pb5. ∃x ∈ Z Raxa (Za iff for all b, c ∈ K, Rabc⇒ ∃x ∈ O Rxbc)

Pb6. Rabc⇒ Rbac

Pb7. Rabc⇒ (a ≤ c or b ≤ c)
Pb8. (Rabc & a ∈ O)⇒ b ≤ a
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PA9. a ≤ a∗∗

PA10. a∗∗ ≤ a
PA11. Rabc⇒ Rac∗b∗

PA15. a ≤ a~

PA16. Rabc⇒ Rac~b~

PA17. a ∈ O ⇒ a~ ≤ a
PA18. a∗ ≤ a~

PA21. a⊕ ≤ a
PA23. Rabc⇒ Rac⊕b⊕

PA24. a⊕ ≤ a∗

Next, we prove some semantical postulates provable in EBMHb-models and
in EBMDb-models.

Proposition 5.9 (Some post. prov. in EBMHb- and EBMDb-models)
An EBMHb-model (resp., EBMDb-model) is an EBM-model where clause (vi),
P~, PA15 and PA18 (resp., clause (vii), P⊕, PA21 and PA24) hold. Let a
class of EBMHb-models (resp., EBMDb-models) M be defined. Then, the fol-
lowing semantical postulates PA15a and PA15b (resp., PA21a and PA21b) are
provable in any M ∈ M: (PA15a) a~ ≤ a~~; (PA15b) a ≤ a~~; (PA21a)
a⊕⊕ ≤ a⊕; (PA21b) a⊕⊕ ≤ a.

Proof PA15a is immediate by PA15. Then, PA15b follows immediately by
PA15, PA15a and P2b (the proof of PA21a and PA21b is similar).

Lemma 5.10 (EBM-validity of b1-b8, A9-A24) Let M be a class of
EBM-models and M ∈ M. Then, (1) A12, A13, A19 and A20 are true in
M; (2) A14 (resp., A22) is true in M if PA15 (resp., PA21) holds in M; (3)
for any k (1 ≤ k ≤ 8), bk is true in M if Pbk holds in M; (4) Ak is true in M
if PAk holds in M (k ∈ {9, 10, 11, 15, 16, 17, 18, 21, 23, 24}).

Proof The proof of the validity of b1-b8 and A9-A11 can be found in [25],
Chapter 4, and/or [23]. Next, A12 and A13 (resp., A19 and A20) are immediate
by clause (vi) (resp., clause (vii)). Then, the proof of A14-A18, A21-24 is as
follows:

(We lean upon the Entailment and Hereditary Lemmas, Lemmas 5.5 and
5.4, respectively. Lemma 5.5 is in particular used to base the reductio strategy
in the proofs to follow. By i, ii, etc., we refer to clauses (i), (ii), etc, in Definition
5.1.)

(a) A14, C → [B → ¬(A ∧ ¬A)], is true in M: For reductio, suppose that
there are formulas A,B,C and a ∈ K in M such that (1) a � C but (2)
a 2 B → ¬(A∧¬A). By 2 and iv, there are b, c ∈ K in M such that (3) Rabc,
(4) b � B and (5) c 2 ¬(A ∧ ¬A). By 5 and vi, we have (6) c~ � A ∧ ¬A, i.e.,
(7) c~ � A and (8) c~ � ¬A, by ii. Finally, (9) c~~ 2 A follows by 8 and vi.
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But we apply PA15a and Lemma 5.4 to 7 and then we obtain (10) c~~ � A,
a contradiction.

(b) A15, C → [(A∧¬A)→ B], is true in M: Suppose that there are formulas
A,B,C and a ∈ K in M such that (1) a � C but (2) a 2 (A∧¬A)→ B. By 2
and iv, there are b, c ∈ K in M such that (3) Rabc, (4) b � A∧¬A and c 2 B.
By 4 and ii, we have (5) b � A and (6) b � ¬A, whence by vi, (7) b~ 2 A
follows. But by 5, PA15 and Lemma 5.4, we get (8) b~ � A, contradicting 7.

(c) A16, (A → B) → (¬B → ¬A), is true in M: Suppose that there are
formulas A,B and a ∈ K in M such that (1) a � A→ B but (2) a 2 ¬B → ¬A.
By 2 and iv, there are b, c ∈ K in M such that (3) Rabc, (4) b � ¬B and (5)
c 2 ¬A. By 4, 5 and vi, we get (6) b~ 2 B and (7) c~ � A; and by 3 and PA16,
we obtain (8) Rac~b~. Then, (9) b~ � B is derivable by 1, 7, 8 and iv. But 6
and 9 contradict each other.

(d) A17, A∨¬A, is true in M: Let a ∈ O. If (1) a 2 A∨¬A, then (2) a 2 A
and (3) a 2 ¬A follow. By vi and 3, we get (4) a~ � A and by PA17, Lemma
5.4 and 4, (5) a � A. But 2 and 5 contradict each other.

(e) A18, ¬A →∼ A, is true in M: Suppose that there is a formula A and
a ∈ K in M such that (1) a � ¬A but (2) a 2∼ A. By 2 and v, we get (3)
a∗ � A; and by 3 and PA18, we have (4) a~ � A. Then given 1, (5) a~ 2 A is
derivable by vi. But 4 and 5 contradict each other.

Axioms A21, A22, A23 and A24 are proved similarly as A14, A15, A16 and
A18.

Definition 5.11 (QB-models) Let L be a QB-logic. A QB-model is de-
fined when adding to BM-models the semantical postulates corresponding to
the axioms added to BM for axiomatizing L. For example, BHsDs-models are
structures (O,K,R, ∗,~,⊕,�) where O, K, R, ∗, ~, ⊕ and � are defined ex-
actly as in Definition 5.1, save for the addition of the postulates P~, P⊕, PA9,
PA10, PA15, PA16, PA18, PA21, PA23 and PA24. (The notion of L-validity
is defined according to the general Definition 5.3).

Theorem 5.12 (Soundness of QB-logics) Let L be a QB-logic. For any
formula A, if `L A, then �L A.

Proof By Proposition 5.6 and Lemma 5.10, given Definition 5.11.

6 Completeness of the QB-logics

We begin by defining some preliminary concepts necessary in order to define
the canonical model (cf. [25], Chapter 4).

Definition 6.1 (QB-theories) Let L be a QB-logic. An L-theory is a set of
formulas closed under Adjunction (Adj) and L-implication (L-imp). That is,
a is an L-theory if whenever A,B ∈ a, A ∧ B ∈ a; and if whenever A → B is
a theorem of L and A ∈ a, B ∈ a.
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By the term QB-theory, we will generally refer to any theory defined upon a
QB-logic as just indicated. The clases of QB-theories of interest in the present
paper are remarked in the following definition.

Definition 6.2 (Classes of theories) Let L be a QB-logic and a be an L-
theory. We set (1) a is prime iff whenever A∨B ∈ a, then A ∈ a or B ∈ a; (2)
a is empty iff it contains no wffs; (3) a is regular iff a contains all theorems of
L; (4) a is trivial iff every wff belongs to it.

Proposition 6.3 (On non-emptiness) (1) Let L be an H-logic and a be a
non-empty L-theory. Then, ¬(A∧¬A) ∈ a and ¬A∨¬¬A ∈ a. (2) Let L be a

D-logic and a be a non-empty L-theory. Then, A∨ •¬A ∈ a and
•¬(A∧ •¬A) ∈ a.

Proof Immediate (1) by A14 and T2a; (2) by A21 and T2b.

Remark 6.4 (On A17 in H-logics) Let L be an H-logic and a an L-theory.
Notice that A∨¬A does not necessarily belong to a. But A∨¬A is certainly a
formula of a if L includes L′SHb and a is a regular L-theory. (L′ is a QB-logic.)

Proposition 6.5 (On triviality) (1) Let L be an H-logic, a be an L-theory
and A be any formula. Then, a is trivial iff A∧¬A ∈ a. (2) Let L be a D-logic,

a be an L-theory and A be any formula. Then, a is trivial iff
•¬(A ∨ •¬A) ∈ a

(i.e., iff
•¬A ∧ •¬ •¬A ∈ a). (3) Let L be an H-logic, a be a non-empty L-theory

and A be any formula. Then, a is trivial iff ¬¬(A ∧ ¬A) ∈ a.

Proof (1) and (2) are immediate by A15 and A22, respectively. (3) (⇐) Sup-
pose ¬¬(A ∧ ¬A) ∈ a and let B be an arbitrary formula. As a is non-empty,
¬(A ∧ ¬A) ∈ a by Proposition 6.3. By A15, [¬(A ∧ ¬A) ∧ ¬¬(A ∧ ¬A)]→ B.
Then, B ∈ a.

In what follows, F will generally refer to ∗,~ and ⊕, and
�¬ will generally

refer to ∼,¬ and
•¬.

Next, the canonical QB-models are defined.

Definition 6.6 (Canonical QB-models) Let L be a QB-logic and KT be
the set of all L-theories and RT be defined on KT as follows: for all a, b, c ∈ KT

and wffs A,B, RTabc iff (A → B ∈ a & A ∈ b) ⇒ B ∈ c. Now, let KC be
the set of all non-trivial, non-empty prime L-theories and OC be the subset
of KC formed by the regular L-theories. On the other hand, let RC be the
restriction of RT to KC and ∗C , ~C and ⊕C be defined on KC as follows:

for each a ∈ KC , aF
C

= {A | �¬A /∈ a}. Finally, �C is defined as follows: for
any a ∈ KC and wff A, a �C A iff A ∈ a. Then, the canonical L-model is the
structure (KC , OC , RC ,FC ,�C).

Before proceeding into the completeness proof, let us note an important
fact.
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Remark 6.7 (On canonical relevant models) There is an important feature dis-
tinguishing the canonical QB-models from the canonical models for standard
relevance logics such as E (the logic of entailment) or R (the logic of relevant
implication). Namely, in the former, theories need to be non-empty and non-
trivial, unlike in the latter. This fact permeates the entire completeness proof
sharply distinguishing it from standard proofs for E, R or their subsystems:
each time a theory is built, one has to show that it contains (and lacks) at
least one wff. In this sense, A14, A15, A21 and A22 are essential (cf. Lemmas
6.8, 6.10 and 6.17, below). In this connection, we note that in [5] the question
whether the empty theory and the set of all formulas (as a theory) should be
included in the set of prime theories is investigated.

We proceed into the completeness proof. Firstly, a series of lemmas is
proved leaning on which it will be shown that the structures defined in Defi-
nition 6.6 are indeed QB-models.

Lemma 6.8 (Defining x for a, b in RT ) Let L be a QB-logic and a, b be
non-empty L-theories. The set x = {B | ∃A[A → B ∈ a & A ∈ b]} is a
non-empty L-theory such that RTabx.

Proof (1) H-logics. Suppose that a and b are non-empty H-theories. It is easy
to show that x is an H-theory. Then, RTabx is immediate by definition of
RT (Definition 6.6). Moreover, x is non-empty. Let A ∈ a, B ∈ b. By A14,
A→ [B → ¬(C ∧¬C)]. So, B → ¬(C ∧¬C) ∈ a and thus ¬(C ∧¬C) ∈ x. (2)
D-logics. The proof is similar to that of case (1) (we now use A21).

Lemma 6.9 (Extending a in RTabc to a member in KC) Let L be a QB-
logic and a, b be non-empty L-theories and c be a non-trivial prime L-theory
such that RTabc. Then, there is a non trivial (and non-empty) prime L-theory
x such that a ⊆ x and RTxbc.

Proof Given the hypothesis of Lemma 6.9, we can build a non-empty prime
L-theory x such that a ⊆ x and RTxbc, following [25], Chapter 4. (The proof
works for almost any logic including B+ —cf. Definition 2.4.) Suppose now
that x is trivial and let A ∈ b and B be an arbitrary wff. As x is trivial,
A → B ∈ x. Then, B ∈ c (RTxbc, A → B ∈ x, A ∈ b and definition of RT

—cf. Definition 6.6), contradicting the non-triviality of c.

Lemma 6.10 (Extending b in RTabc to a member in KC) Let L be a
QB-logic, a and b be non-empty L-theories and c be a non-trivial prime L-
theory such that RTabc. Then, there is a non trivial (and non-empty) prime
L-theory x such that b ⊆ x and RTaxc.

Proof (1) H-logics. Similarly as in the preceding lemma, we build a non-empty
prime L-theory x such that RTaxc. Suppose that x is trivial and let A ∈ a and
B be an arbitrary wff. By A15, A→ [(C ∧¬C)→ B]. So, (C ∧¬C)→ B ∈ a.
As x is trivial, C∧¬C ∈ x (cf. Proposition 6.5). But then B ∈ c, contradicting
the non-triviality of c. (2) D-logics. The proof proceeds as in the case of H-
logics (we now use A22).
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Lemma 6.11 below shows that the canonical relation ≤C is just set inclusion
between non-trivial and non-empty prime theories. (By LTH, we refer to the
set of all theorems of the QB-logic L.)

Lemma 6.11 (≤C and ⊆ are coextensive) For any a, b ∈ KC , a ≤C b iff
a ⊆ b.

Proof From left to right, it is immediate. So, suppose a ⊆ b for a, b ∈ KC .
Clearly, RT LTHaa (cf. Definition 6.1). Then, by using Lemma 6.9, there is
some prime regular non-trivial L-theory x such that LTH ⊆ x and RCxaa. By
the hypothesis RCxab, i.e., a ≤C b, since x ∈ OC .

Lemma 6.12 (Primeness of FC-images) Let L be a QB-logic and a be

prime L-theory. Then, aF
C

is a prime L-theory as well.

Proof (Cf. [25], Chapter 4.) As there is no danger of confusion between aF (i.e.,

a∗, a~ or a⊕) in K and the canonical L-theory aF
C

(i.e., a∗
C

, a~
C

or a⊕
C

) in
KC , we omit the superscript “C” in this and the proofs to follow. aF is closed

under L-imp by Con
�¬; aF is closed under Adj by

�¬(A∧B)→ (
�¬A∨ �¬B); aF

is prime by (
�¬A ∧ �¬B)→ �¬(A ∨B).

Lemma 6.13 (FC is an operation on KC) Let L be a QB-logic and a be

a non-trivial and non-empty prime L-theory. Then, aF
C

is a non-trivial and
non-empty prime theory as well.

Proof By Lemma 6.12, aF is a prime L-theory. Next, it is shown that if a
is non-trivial and non-empty, then aF is also non-trivial and non-empty. (1)
H-logics. (i) a~ is non-trivial. By Proposition 6.3, ¬(A ∧ ¬A) ∈ a. So, A ∧
¬A /∈ a~ by Definition 6.6. (ii) a~ is non-empty. Suppose a~ is empty. Then,
¬(A ∧ ¬A) /∈ a~, whence ¬¬(A ∧ ¬A) ∈ a by Definition 6.6. Thus, a is
trivial (Proposition 6.5), contradicting the hypothesis. (2) D-logics. The proof
is similar.

Concerning Lemma 6.13, we note the following remark.

Remark 6.14 (FC is not an operation on OC) The canonical operations
∗C ,~C and ⊕C are not operations on OC : a would have to be weak consistent
(i.e., without the negation of any theorem whatsoever; cf. [23] and references

therein) in order to prove that a∗
C

, a~
C

and a⊕
C

are regular (cf. Remark 6.7).

In what follows, we prove the ensuing two facts: (1) the postulates are
canonically valid; and (2) �C is a (valuation) relation satisfying clauses (i)-
(vii) in Definition 5.1.

Lemma 6.15 (The postulates are canonically valid) Let L be a QB-
logic. Then, (1) P1, P2a, P2b, P2c, P2d and P3 hold in the canonical L-
model. (2) For any k (1 ≤ k ≤ 8), Pbk holds in the canonical L-model if bk
is provable in L. (3) PAk holds in the canonical L-model if Ak is provable in
L (k ∈ {9, 10, 11, 15, 16, 17, 18, 21, 23, 24}). (4) P~ (resp., P⊕) holds in the
canonical L-model if L is an H-logic (resp., a D-logic).
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Proof The proof is similar to that provided in [25], Chapter 4, for extensions
of Routley and Meyer’s basic logic B. Actually, a proof for P1 P2a, P2b, P2c,
P2d, P3, PA9, PA10 and PA11 can be found in the aforementioned chapter.
(2): The proof is displayed in [25], Chapter 4 and/or in [23]. (3) We prove
PA15, PA16, PA17 and PA18 (the proof of PA21, PA23 and PA24 is similar).
(5) P~ (resp., P⊕) holds simply by definition of ~C (resp., ⊕C) similarly as
P3 is immediate by definition of ∗C (cf. Definition 6.6).

(a) PA15, a ≤ a~, is provable in the canonical L-model : Suppose a ∈ KC

and (1) A ∈ a. We have to prove A ∈ a~. Suppose, for reductio, (2) A /∈ a~.
Then, we have (3) ¬A ∈ a, whence by 1, we get A∧¬A ∈ a, contradicting the
non-triviality of a (cf. Proposition 6.5).

(b) PA16, Rabc⇒ Rac~b~, is provable in the canonical L-model (cf. [25],
Chapter 4): Let a, b, c ∈ KC and A,B be wffs such that (1) RCabc (2) A →
B ∈ a and (3) A ∈ c~. We have to prove B ∈ b~. By A16, we have (4)
¬B → ¬A ∈ a and by 3, (5) ¬A /∈ c, whence, by 1 and 4, we get (6) ¬B /∈ b,
i.e., (7) B ∈ b~, as was to be proved.

(c) PA17, a ∈ O ⇒ a~ ≤ a, is provable in the canonical L-model : Suppose
a ∈ OC and (2) A ∈ a~. We have to prove A ∈ a. By A17, we have (3)
A∨¬A ∈ a and, by 2, (4) ¬A /∈ a. Then, A ∈ a follows by 3, 4 and primeness
of a.

(d) PA18, a∗ ≤ a~, is provable in the canonical L-model : Suppose (1)
A ∈ a∗. We have to prove A ∈ a~. By A18, we have (2) ¬A→∼ A, and by 1,
(3) ∼ A /∈ a. Then, (4) ¬A /∈ a follows by 2 and 3. Finally, we get (5) A ∈ a~
by 4, as it was to be proved.

Lemma 6.16 (Extension to prime theories) Let L be a QB-logic, a be an
L-theory and A a wff such that A /∈ a. Then, there is a prime L-theory x such
that a ⊆ x and A /∈ x.

Proof Cf., e.g., [25], Chapter 4, where it is shown how to proceed in an ample
class of logics including the logic B+ (cf. Definition 2.4).

Lemma 6.17 (Clauses (i)-(vii) hold canonically) Let L be a QB-logic
and ML be the canonical L-model. Then, clauses (i)-(vii) in Definition 5.1 are
satisfied by the canonical ML-model.

Proof Clause (i) is immediate by Lemma 6.11 and clauses (ii), (iii), and (iv)
from left to right are very easy; next, clauses (v), (vi) and (vii) are immediate
by Definition 6.6. So, let us prove (iv) from right to left. For wffs A, B and
a ∈ KC , suppose A → B /∈ a (i.e., a 2C A → B). We prove that there are
x, y ∈ KC such that RCaxy, A ∈ x (i.e., x �C A) and B /∈ y (i.e., y 2C B).
Consider the sets z = {C |`L A → C} and u = {C | ∃D[D → C ∈ a &
D ∈ z]}. They are L-theories such that RTazu. Now, A ∈ z (by A1 of B+

—cf. Definition 2.4) and B /∈ u (if B ∈ u, then A→ B ∈ a, contradicting the
hypothesis). So, z is non-empty and u is non-trivial. Moreover, u is non-empty
by Lemma 6.8. Now, by applying Lemma 6.16, u is extended to a non-trivial,
non-empty prime L-theory y such that u ⊆ y, B /∈ y and RTazy. Next, by
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using Lemma 6.10, z is extended to a non-trivial, non-empty prime L-theory
x such that z ⊆ x and RCaxy. Clearly, A ∈ x. Therefore, we have non-trivial
and non-empty prime L-theories x, y such that A ∈ x, B /∈ y and RCaxy, as
was to be proved.

After showing that canonical QB-models are indeed QB-models, we finally
prove completeness.

Lemma 6.18 (Canonical QB-models are in fact QB-models) Let L be
a QB-logic and ML be the canonical L-model. Then, ML is an L-model.

Proof Since RC is clearly a ternary relation on KC , FC is an operation on
KC (Lemma 6.13) and KC is non-empty (Lemma 6.16: the set of theorems
of L, LTH, is non-empty and non-trivial), Lemma 6.18 follows by Lemma 6.15
and 6.17.

Theorem 6.19 (Completeness of QB-logics) Let L be a QB-logic. For
each wff A, if �L A, then `L A.

Proof Suppose 0L A. By Lemma 6.16, there is a non-trivial, non-empty prime
theory x such that LTH ⊆ x and A /∈ x. By Definition 6.6 and Lemma 6.18,
x 2C A. Therefore, 2L A by Definition 5.3.

7 Concluding remarks

The present paper is a preliminary study on QB-negation expansions of rele-
vance logics. Essentially, we have shown how to interpret ten basic and different
to each other QB-negation expansions of logics including Sylvan and Plum-
wood’s BM and included in Anderson and Belnap’s R in RM-semantics. All
these logics are paraconsistent w.r.t. D-negation and paracomplete w.r.t. H-
negation (cf. Appendix II). To the best of our knowledge, the said logics have
not been treated previously in the literature. In particular, they are different
from Boolean or super-Boolean expansions of relevance logics (cf. §4). It is
to be expected that QB-negation expansions of relevance logics are as useful
as B-negation ones (cf. the introduction to the paper). There are a number
of lines of research on the topic that merit consideration, in our opinion. We
remark some of them.

– Study to what extent the independence of the QB-axioms from each other
and from the ECQ and CPEM axioms still holds when expanding the
language with additional connectives such as fusion (◦), or ‘left implication’
(←), for example.

– Investigate if the QB-negations can equivalently be introduced by means
of falsity constant f similarly as in intuitionistic logics (i.e., by using the

definition
�¬A =df A→ f).
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– t13 (in Appendix I) shows that the reductio axioms are not derivable from
contractionless relevance logic R, RW, plus A12-A24. It would be inter-
esting to further examine the relation between the said axioms and QB-
negations.

– t12 (in Appendix I) shows that expansion of the negationless fragment of
Lewis’ modal logic S5 with DM-negation, H-negation and D-negation does
not collapse into classical or standard modal logic. Thus, this is a starting
point for developing an investigation on modal logics similar to the one
carried out on relevance logics in the present paper.

A Appendix I

The following sets of truth-tables t1-t13 are used to prove some claims made throughout
the paper (designated values are starred). Let L be a logic defined upon the language L (cf.
Definitions 2.1 and 2.2), Γ a set of wffs and A a wff of L. On the other hand, let t be a
set of truth-tables and v an assignment to the propositional variables of L built upon t. v
verifies A if it assigns a designated value to A; and v verifies the rule Γ ⇒ A if it assigns a
designated value to A, provided it assigns a designated value to each B ∈ Γ . Then, t verifes
L if every assignment v verifies all axioms and rules of L. The sets t1-t13 have been found by
using MaGIC (cf. [26]; each set of tables is the simpler one justifying the respective claim).
(In case a tester is needed, the reader can use that in [15].) In what follows, p, q and r are
distinct propositional variables.

t1.

→ 0 1 2 3 ∼
0 3 3 3 3 3
*1 0 1 2 3 2
*2 0 0 2 3 1
*3 0 0 0 3 0

∧ 0 1 2 3
0 0 0 0 0
*1 0 1 1 1
*2 0 1 2 2
*3 0 1 2 3

∨ 0 1 2 3
0 0 1 2 3
*1 1 1 2 3
*2 2 2 2 3
*3 3 3 3 3

This set verifies all axioms and rules of RM3+ (i.e., B+ plus b2, b4, b6, b7 and b8. Cf.
Definitions 2.4 and 2.7) plus A7-A10 and Con∼, but falsifies A11: v[(p → q) → (∼ q →∼
p)] = 0 for any assignment v such that v(p) = v(q) = 2.

t2.
→ 0 1 ∼
0 1 1 1
*1 0 1 1

∧ 0 1
0 0 0
*1 0 1

∨ 0 1
0 0 1
*1 1 1

t2 verifies RM3+ plus A7, A8 and Con∼ but falsifies A10: v(∼∼ p → p) = 0 for any
assignment v such that v(p) = 0.

t3.
→ 0 1 ∼ − ¬ •¬
0 1 1 1 1 0 1
*1 0 1 0 0 0 1

∧ 0 1
0 0 0
*1 0 1

∨ 0 1
0 0 1
*1 1 1

t3 verifies classical propositional logic C and A12, A13, A15, A16, A18, A19-A21, A23
and A24 but falsifies A14 and A22: v[p → [q → ¬(r ∧ ¬r)]] = 0 for any assignment v such

that v(p) = v(q) = v(r) = 1; and v[p → [
•¬(r ∧ •¬r) → q]] = 0 for any assignment such that

v(p) = 1 and v(q) = v(r) = 0.

t4.

→ 0 1 2 3 ∼ ¬ •¬
0 3 3 3 3 3 3 3
1 0 2 0 3 2 2 2
*2 0 0 2 2 1 1 1
*3 0 0 0 2 0 0 0

∧ 0 1 2 3
0 0 0 0 0
1 0 1 0 1
*2 0 0 2 2
*3 0 1 2 3
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∨ 0 1 2 3
0 0 1 2 3
1 1 1 3 3
*2 2 3 2 3
*3 3 3 3 3

t4 verifies the logic G (i.e., B plus the PEM axiom A∨ ∼ A) plus A12, A13, A15, A17-

A20, A22, A24, Con¬ and Con
•¬ but falsifies A14 and A21: v[p→ [q → ¬(r ∧¬r)]] = v[p→

[q → (r ∨ •¬r)]] = 0 for any assignment v such that v(p) = v(q) = v(r) = 3.

t5.

→ 0 1 2 3
0 2 2 2 3
1 0 2 0 3
*2 0 0 2 3
*3 0 0 0 3

The tables for ∧,∨,∼,¬ and
•¬ are the same as in t4.

t5 verifies the logic G plus A12-A14, A17-A21, A24, Con¬ and Con
•¬ but falsifies A15

and A22: v[p → [(q ∧ ¬q) → r]] = v[p → [
•¬(r ∨ •¬r) → r]] = 0 for any assignment v such

that v(p) = v(q) = v(r) = 1.

t6.

→ 0 1 2 3 ¬
0 3 3 3 3 2
1 0 3 0 3 2
*2 0 0 3 3 0
*3 0 0 0 3 0

The tables for ∧,∨ and ∼ are the same as in t4.

t6 verifies the logic ticket entailment T (cf. §2) plus A12, A13, A15-A18, but falsifies
A14: v[p→ [q → ¬(r ∧ ¬r)]] = 0 for any assignment v such that v(p) = v(q) = v(r) = 1.

t7.

→ 0 1 2 3
0 2 2 2 2
1 0 2 0 2
*2 0 0 2 2
*3 0 0 0 2

The tables for ∧,∨,∼,¬ and
•¬ are as in t4.

t7 verifies the logic E (cf. §2) plus T5, T8 (cf. Proposition 3.4), A12, A13, A16-A20, A23,

A24, the ECQ axiom, (A∧¬A)→ B, and the CPEM axiom, B → (A∨ •¬A), but falsifies A14,

A15, A21 and A22: v[p→ [q → ¬(r∧¬r)]] = v[p→ [(r∧¬r)→ q]] = v[p→ [q → (r∨ •¬r)]] =

v[p→ [
•¬(r ∨ •¬r)→ q]] = 0 for any assignment v such that v(p) = v(q) = v(r) = 1.

t8.

→ 0 1 2 3 4 5 6 7 ∼ −
0 7 7 7 7 7 7 7 7 7 7
1 0 5 6 0 0 0 5 7 6 4
2 0 0 5 0 0 0 0 7 5 5
3 0 0 4 5 5 0 0 7 4 6
*4 0 0 3 0 5 0 0 7 3 1
*5 0 1 2 3 4 5 6 7 2 2
*6 0 0 1 0 0 0 5 7 1 3
*7 7 7 7 7 7 7 7 7 0 0
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∧ 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 1 1
2 0 1 2 3 3 0 1 2
3 0 0 3 3 3 0 0 3
*4 0 0 3 3 4 5 5 4
*5 0 0 0 0 5 5 5 5
*6 0 1 1 0 5 5 6 6
*7 0 1 2 3 4 5 6 7

∨ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 1 2 2 7 6 6 7
2 2 2 2 2 7 7 7 7
3 3 2 2 3 4 4 7 7
*4 4 7 7 4 4 4 7 7
*5 5 6 7 4 4 5 6 7
*6 6 6 7 7 7 6 6 7
*7 7 7 7 7 7 7 7 7

t8 verifies RB, that is, the logic R plus A ↔ − − A, B → (A ∨ −A), (A ∧ −A) → B
and Con− (i.e., A→ B ⇒ −B → −A) but falsifies (A→ B)→ (−B → −A): v[(p→ q)→
(−q → −p)] = 0 for any assignment v such that v(p) = 5 and v(q) = 1.

t9.

→ 0 1 2
0 2 2 2
*1 0 1 2
*2 0 0 2

∧ 0 1 2
0 0 0 0
*1 0 1 1
*2 0 1 2

∨ 0 1 2
0 0 1 2
*1 1 1 2
*2 2 2 2

∼ ¬ •¬
0 2 2 2
*1 1 0 2
*2 0 0 0

t9 verifies RM3 (cf. §2) plus A12-A24 but falsifies q → (p ∨ ¬p) (for any assignment v

such that v(p) = 1 and v(q) = 2) and (p∧ •¬p)→ q (for any assignment v such that v(p) = 1
and v(q) = 0).

Also notice that v(∼ p → ¬p) = v(
•¬p →∼ p) = 0 for any assignment v such that

v(p) = 1.

t10.

→ 0 1 2 3 ¬
0 3 3 3 3 3
1 0 2 2 3 0
*2 0 1 2 3 0
*3 0 0 0 3 0

Tables for ∼,∧,∨ are as in t1.
t10 verifies R plus A12-A16 and A18, but falsifies A17: v(p∨¬p) = 0 for any assignment

v such that v(p) = 1.

t11.

→ 0 1 2 3 4 5 ∼ ¬ •¬
0 5 5 5 5 5 5 5 5 5
1 0 2 0 4 0 5 4 4 4
*2 0 1 2 3 4 5 3 1 5
*3 0 0 0 2 0 5 2 0 4
*4 0 0 0 1 2 5 1 1 1
*5 0 0 0 0 0 5 0 0 0

∧ 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 0 1 0 1
*2 0 0 2 2 2 2
*3 0 1 2 3 2 3
*4 0 0 2 2 4 4
*5 0 1 2 3 4 5

∨ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 1 3 3 5 5
*2 2 3 2 3 4 5
*3 3 3 3 3 5 5
*4 4 5 4 5 4 5
*5 5 5 5 5 5 5

t11 verifies R plus A12-A15, A17-A22 and A24, but falsifies A16 and A23: v[(p→ q)→
(¬q → ¬p)] = 0 for any assignment v such that v(p) = 2 and v(q) = 4; v[(p→ q)→ (

•¬q →
•¬p)] = 0 for any assignment v such that v(p) = 1 and v(q) = 3.

t12.

→ 0 1 2
0 2 2 2
*1 0 2 2
*2 0 0 2
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The tables for ∧,∨,∼,¬ and
•¬ are as in t9.

t12 verifies the 3-valued expansion of the negationless fragment of Lewis’ modal logic
S5 (cf. [16], [24] and references in the last item) plus A12-A24 but falsifies (p∧ ∼ p) → q

and (p∧ •¬p)→ q (for any assignment v such that v(p) = 1 and v(q) = 0) and q → (p∨ ∼ p)
and q → (p ∨ ¬p) (for any assignment v such that v(q) = 2 and v(p) = 1).

t13.

→ 0 1 2 3
0 3 3 3 3
1 0 2 1 3
*2 0 1 2 3
*3 0 0 0 3

The tables for ∧,∨,∼,¬ and
•¬ are as in t4.

t13 verifies the logic RW (cf. §2) plus A12-A24 but falsifies (∼ p→ p)→ p, (¬p→ p)→ p

and (
•¬p → p) → p (for any assignment v such that v(p) = 2), and (p →∼ p) →∼ p,

(p→ ¬p)→ ¬p and (p→ •¬p)→ •¬p (for any assignment v such that v(p) = 1).

B Appendix II

Proposition B.1 (Ant, DNE are deriv. in FDE+ plus ECQ & CPEM) The axiom
DNE, − − A → A, and the rule Ant, (A ∧ B) → −C ⇒ (A ∧ C) → −B are derivable in
FDE+ plus the axioms ECQ, (A ∧ −A)→ B, and CPEM, B → (A ∨ −A).

Proof (Sketch)
(a) (A ∧B)→ −C ⇒ (A ∧ C)→ −B:
Suppose (1) (A∧B)→ −C (Hyp) and (2) (C∧−C)→ −B (ECQ). By 1, 2 and FDE+, we

have (3) [(A∧C)∧B]→ −B. On the other hand, we obviously have (4) [(A∧C)∧−B]→ −B.
By 3, 4 and FDE+, we get (5) [(A∧C)∧ (B ∨−B)]→ −B. Now, we use (6) C → (B ∨−B)
(CPEM), whence we obtain (7) [(A ∧ C) ∧ (A ∧ C)]→ [(A ∧ C) ∧ (B ∨−B)]. Finally, by 5,
7 and FDE+, we get (8) (A ∧ C)→ −B, as was to be proved.

(b) −−A→ A:
We have (1) −−A→ (A∨−A) (CPEM). By 1 and FDE+, we have (2) (−−A∧−−A)→

[(−−A∧A)∨ (−−A∧−A]. We use now (3) (−−A∧−A)→ A (ECQ). By 3 and FDE+,
we get (4) [(− − A ∧ A) ∨ (− − A ∧ −A)] → A. Finally, by 2, 4 and FDE+, we have (5)
−−A→ A, as was to be proved.

Proposition B.2 (Non-independence of A15 and A21) A15 (resp., A21) is derivable

from DW plus A12-A14, A18 and Con¬ (resp., A19, A20, A22, A24 and Con
•¬) (cf. §2 on

the logic DW).

Proof (a) A15: By A18, we have (1) ¬(C ∧ ¬C)→∼ (C ∧ ¬C), whence by A14, we get (2)
A→ [∼ B →∼ (C ∧ ¬C)]. Then, by A11, (3) A→ [∼∼ (C ∧ ¬C)→∼∼ B] follows. Finally,
(4) A→ [(C ∧ ¬C)→ B] is derivable by A9 and A10. (b) The proof of A21 is similar.

Proposition B.3 (Non-independence of A14) A14 is derivable from the logic E (cf.
§2) plus A12, A13 and A15-A18.

Proof Firstly, the derivability of B → ¬(A ∧ ¬A) is proved. We use the rule assertion,
A⇒ (A→ B)→ B, admissible in E (cf. [21]).

We have (1) B → [¬C → ¬(A ∧ ¬A)] and (2) B → [¬¬C → ¬(A ∧ ¬A)] by A15 and
A16. Then, (3) B → [(¬C ∨ ¬¬C) → ¬(A ∧ ¬A)] is provable by the E∨ axiom (A5 of B+

—cf. Definition 2.4). Next, (4) [(¬C ∨¬¬C)→ ¬(A∧¬A)]→ ¬(A∧¬A) follows by the rule
assertion and A17. Finally, we get (5) B → ¬(A ∧ ¬A) from (3) and (4).

Once B → ¬(A∧¬A) is proved, A→ ¬¬A is derivable from this thesis and (A∧¬A)→
¬¬A, similarly as −−A→ A is demonstrated with −−A→ (A∨−A) and (−−A∧−A)→ A
in Proposition B1. Finally, A14 follows from C → [(¬¬B → ¬(A ∧ ¬A)] (cf. (2) above) and
B → ¬¬B.
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Paraconsistency and paracompleteness Let L be a logic, the negation operator
�¬

being one of its connectives; and let a be an L-theory. a is
�¬-inconsistent if A ∧ �¬A ∈ a,

for some wff A; and a is
�¬-complete if A ∈ a or

�¬A ∈ a for every wff A. Then, L is
�¬-

paraconsistent if there is at least one
�¬-inconsistent regular L-theory which is not trivial;

and L is
�¬-paracomplete if there is at least one (non-trivial) prime and regular L-theory

which is not complete (notice that if a is a non-trivial regular and
�¬-inconsistent L-theory,

in general, it is not difficult to extend a to a prime theory with the same properties).
We prove Propositions B4 and B5.

Proposition B.4 (RDs is
•¬-paraconsistent) The logic RDs is R (cf. §2) plus A19-A24.

Then, any logic L included in RDs is
•¬-paraconsistent.

Proof Let p, q be different propositional variables. Consider the set z = {B |`L A &

`L [A ∧ (p ∧ •¬p)] → B}. It is easy to show that z is a regular L-theory and that it is
•¬-inconsistent. Anyway, z is not trivial. Consider t9 (in Appendix I) and any assignment v

defined on the set {0, 1, 2} such that v(p) = 1 and v(q) = 0. Clearly, v[A∧ (p∧ •¬p)] = 1 but

v[[A ∧ (p ∧ •¬p)]→ q] = 0, whence by the soundness theorem of RDs (cf. Theorem 5.12) we

get 0RDs [A ∧ (p ∧ •¬p)] → q. Consequently, q /∈ z. Then, we apply Lemma 6.16 and there
is a prime, regular and non-trivial L-theory x such that z ⊆ x but q /∈ x. Therefore, x is
•¬-inconsistent, but not trivial.

Proposition B.5 (RHs is ¬-paracomplete) The logic RHs is R (cf. §2) plus A12-A16
and A18. Then, any logic L included in RHs is ¬-paracomplete.

Proof Similar to (but simpler than) that of Proposition B4, now using t10 in Appendix I.

On strong completeness (see [25] and [8]) In Theorem 6.19, a weak completeness
theorem is proved for all the QB-logics defined in the paper. Regarding strong completeness,
in the context of RM-semantics, we need prime theories closed under all primitive rules of the
logic in question. Unfortunately, in general, it is not possible to build up prime L-theories
closed under all primitive rules of inference of a QB-logic L if it lacks the MP axiom,
[A ∧ (A → B)] → B, or has other primitive rules of inference in addition to MP and Adj.
Nevertheless, the required prime L-theories are definable, provided the disjunctive version
or the thesis corresponding to each primitive rule of inference of L is added. For instance,
suppose Modus Tollens (MT), A → B & ¬B ⇒ ¬A, is a primitive rule of inference of
L. Then, the disjunctive version of MT is C ∨ (A → B) & C ∨ ¬B ⇒ C ∨ ¬A; and, of
course, the corresponding thesis to MT is [(A → B) ∧ ¬B] → ¬A. Consequently, a strong
completeness theorem for a QB-logic L is available if (a) L has no primitive rules of inference
other than Adj and MP and the MP axiom is an L-theorem, or (b) L has the disjunctive
version or the corresponding thesis to each one of its primitive rules of inference.

In addition, it has to be noted that if the required prime theories are available, then a
reduced RM1-semantics, preferable when possible to the unreduced version, can be defined.
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5. Bimbó, K., Dunn, J. M. (2008). Generalized Galois Logics. Relational Semantics of
Nonclassical Logical Calculi. CSLI Lecture Notes, v. 188, CSLI, Stanford, CA.
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