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THE LOGIC B AND THE REDUCTIO AXIOMS

Abstract

We study the possibilities of introducing the reductio axioms in Routley’s basic

logic B. We show how to define special reductio and conjecture that full reductio

cannot be introduced. Complete relational ternary semantics are provided for all

the logics in the paper.

1. Introduction

In [2], we showed how to introduce a constructive negation defined with a
falsity constant F in B+. The result is the logic called Bmr. This construc-
tive negation can be characterized by the following theses: weak double
negation [ A → ¬¬A ], weak special reductio [ (A → ¬A) → ¬A ], weak
contraposition [ (A → B) → (¬B → ¬A) and (A → ¬B) → (B → ¬A) ].
Along that paper we discussed the possibilities of introducing the (weak)
full reductio axiom wra [ (A → B) → [(A → ¬B) → ¬A] ] in Bmr (see §6
below). The aim of this paper is to investigate the possibilities of introduc-
ing the (weak and strong) full reductio axioms (wra and (¬A → ¬B) →
[(¬A → B) → A]) in the logic B . As it is known, B is the result of adding
strong double negation and contraposition as a rule to the basic positive
logic B+ ( see, e.g., [1] or [3])

In particular, the structure of the paper is as follows. In §1, we recall
the logic B. In §2, we define the logic Bcon (B plus the contraposition
axioms). In §3, we define the logic Bconr (Bcon plus the special reductio
axioms) and prove some syntactical and semantical facts about it. In §4,
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we prove that the full reductio axioms are not derivable in Bconr, and in
§5, we discuss the possibilities of introducing the full reductio axioms in
Bconr. Finally, in §6, we draw some conclusions from §5 via the definition
of two stronger logics with reductio.

As it is known, relevant negation is (syntactically) axiomatized with
double negation, contraposition and reductio (or semantically, in the ternary
relational semantics, with P1, P3 and P4. See §2-§4 below). We think that
our paper clears up the limits to introduce relevant negation (within the
context of the ternary relational semantics) in weak positive logics. Com-
plete semantics are defined for all the logics in the paper. We assume
acquaintance with the ternary relational semantics and, in particular, with
the logics B+ and B.

2. The logic B

The logic B is the result of adding the following axiom and the rule of
inference contraposition (con) to B+:

A1. ¬¬A → A
Con. if ` A → ¬B, then ` B → ¬A
We note that T1-T5 and R1-R3 below are derivable in B:
T1. A → ¬¬A
T2. ¬ (A ∨B) ↔ (¬A ∧ ¬B)
T3. ¬ (A ∧B) ↔ (¬A ∨ ¬B)
T4. (A ∨B) ↔ ¬ (¬A ∧ ¬B)
T5. (A ∧B) ↔ ¬ (¬A ∨ ¬B)

R1. ` A → B ⇒` ¬B → ¬A
R2. ` ¬A → B ⇒` ¬B → A
R3. ` ¬A → ¬B ⇒` B → A

B models are defined adding the operation * (”Routley Star”) to B+
models together with the valuation clause and the postulates below:

(v¬) a |= ¬A iff a∗ 6|= A
P1. a ⇔ a ∗ ∗
P2. a ≤ b ⇒ b∗ ≤ a∗
A formula A is valid iff a |= A for all a ∈ O in all models (O is a

selected subset of the set of possible worlds K).
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3. The logic Bcon

The logic Bcon is defined adding to B the axiom
A2. (A → ¬B) → (B → ¬A)
In addition to T1-T5, we have the following theorems:
T6. (A → B) → (¬B → ¬A)
T7. (¬A → B) → (¬B → A)
T8. (¬A → ¬B) → (B → A)
A Bcon model is the same as a B model save for the substitution of

P2 (which now becomes derivable) for
P3. Rabc ⇒ Rac ∗ b∗
A2 is valid by P3 and, on the other hand, it is clear that in order

to prove the completeness of Bcon, we just have to prove that P3 holds
canonically (see, for example, in [1] or [3] how P3 is proved canonically
valid with T6).

4. The logic Bconr

The logic Bconr is axiomatized addding the following axiom to Bcon:
A3. (A → ¬A) → ¬A

Then, all forms of reductio as a rule are derivable

R4. ` A → B ⇒` (A → ¬B) → ¬A A2, A3
R5. ` A → ¬B ⇒` (A → B) → ¬A R4, T1
R6. ` ¬A → B ⇒` (¬A → ¬B) → ¬A R4, A1
R7. ` ¬A → ¬B ⇒` (¬A → B) → A R6, T1
R8. ` A → B ⇒` (¬A → B) → B R7, T6, T7
R9. ` ¬A → B ⇒` (A → B) → B R8, A1

and in addition to T1-T8, the following theorems:

T9. (A → ¬B) → ¬ (A ∧B) R4
T10. (A → B) → ¬ (A ∧ ¬B) T1, T9
T11. (A → B) → (¬A ∨B) A1, T3, T10
T12. (¬A → B) → (A ∨B) A1, T11
T13. (¬A → A) → A A1, A3, T1
T14. ¬ (A ∧ ¬A) T10
T15. ¬A ∨A T11
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We note the following:

Proposition 1. Any of the rules R4-R9 and theorems T9-T13 can ax-
iomatize Bconr instead of A3

Proof. We sketch a proof of proposition 1:
1. R4-R9 are equivalent given Bcon: they are interdeducible by

contraposition and double negation.
2. Regarding A3 and R4-R9:
(a) A3 is immediately derivable from R7. Therefore, by (i), it is

provable from any of the rules R4-R9.
(b) Given Bcon, R4-R9 are derivable from A3. Prove, e.g., R4 with

A3 and A2.
3. A3 and T9-T13 are equivalent given Bcon.
(a) Prove T9 with R4 . Hence, T9 is derivable from A3 by (ii)(b)
(b) Prove A3 with T9
(c) T9-T12 are equivalent by contraposition, double negation and De

Morgan laws. Hence, A3 is derivable from T9-T12 by (iii)(b).
4. A3 is derivable from T13 by A1 and T1. 2

We note that T14 and T15 cannot axiomatize Bconr instead of A3.
A Bconr model is the same as a Bcon model but with the addition of

the postulate
P4. Raa ∗ a
We note that the following postulate is immediately derivable in all

Bconr models with P3:
P5. Ra ∗ aa∗
A3 is valid by P4, and P4 is canonically valid by T10 (see, for exam-

ple, [1] or [3]). Moreover, in connection with Proposition 1, we have the
following:

Proposition 2. Given Bcon, the corresponding semantic postulate for
A3, R4-R9, T9-T13 is P4.

The ”corresponding semantic postulate” is defined as follows:

Definition 1. Pi is the corresponding semantic postulate for Ti iff (i)
Ti is valid by Pi and (ii) Pi is proved canonically valid with Ti.

Proof. In order to prove Proposition 2, prove that P4 is canonically valid
with T10. Next, use Proposition 1. 2
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5. The full reductio axioms are not derivable
in Bconr

Consider the following set of matrices (2 and 3 are designated values)

→ 0 1 2 3 ¬
0 3 3 3 3 3
1 1 2 2 3 2
2 0 1 2 3 1
3 0 0 1 3 0

∧ 0 1 2 3
0 0 0 0 0
1 0 1 1 1
2 0 1 2 2
3 0 1 2 3

∨ 0 1 2 3
0 0 1 2 3
1 1 1 2 3
2 2 2 2 3
3 3 3 3 3

This set verifies Bconr but falsifies full reductio, to wit,

t1. (A → B) → [(A → ¬B) → ¬A] (A = 1, B = 3)
t2. (A → ¬B) → [(A → B) → ¬A] (A = 1, B = 0)
t3. (¬A → B) → [(¬A → ¬B) → A] (A = 3, B = 2)
t4. (¬A → ¬B) → [(¬A → B) → A] (A = 0, B = 2)
t5. (A → B) → [(¬A → B) → B] (A = 0, B = 2)
t6. (¬A → B) → [(A → B) → B] (A = 3, B = 2)

6. On the introduction of the full reductio
axioms

We prove the

Proposition 3. Consider the following semantic postulates:
p1. Rabc ⇒ ∃x [Rbc ∗ x&Rac ∗ x∗]
p2. Rabc ⇒ ∃x [Rac ∗ x&Rbc ∗ x∗]
p3. Rabc ⇒ ∃x [Rax ∗ c&Rbxc]
p4. Rabc ⇒ ∃x [Raxc&Rbx ∗ c]
Let us add p1-p4 to Bconr models. Now, t1 and t2 are valid by p1 (or

p2), t3 and t4 by p2 (or p1), and t5 and t6 by p3 (or p4).

Proof. Let us prove, for example, that t5 is valid (the rest of the cases
are similar and are left to the reader).

Suppose for some a ∈ K a |= A → B, a 6|= (¬A → B) → B. By
definitions Rabc, b |= ¬A → B, c 6|= B for some b, c ∈ K. Now, by p3,
Rax ∗ c, Rbxc for some x in K. Then, from Rbxc, b |= ¬A → B and c 6|= B
it follows x 6|= ¬A, i.e., x∗ |= A. Hence, c |= B by Rax ∗ c, a |= A → B and
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x∗ |= A. Our initial supposition leading to a contradiction, we conclude t5
is valid (we remark that, given Bcon models, p1 and p4 (p2 and p3) are
equivalent). 2

But, what about the canonical adequacy of p1-p3? Let us try the
proof of, for example, p1. That is, we wish to prove

Proposition 4. The canonical p1, i.e., RCabc ⇒ ∃x[RCbc ∗ x &
RCac ∗ x∗] holds in the canonical model.

Proof. Suppose for a, b, c ∈ KC , RCabc. Define x ={B : ∃A(A ∈ c∗ &
A → B ∈ b)}. Then, RCac ∗ x∗ is proved as follows. Let A → B ∈ a,
a ∈ c∗. We have to prove that B ∈ x∗. Suppose, on the contrary,
B /∈ x∗. Then, ¬B ∈ x. By definition of x, D → ¬B ∈ b for some
D ∈ c∗. By contraposition, B → ¬D ∈ b. Consider now the thesis
suffixing ` (A → B) → [(B → ¬D) → (A → ¬D)]. If suffixing is a the-
orem, then (B → ¬D) → (A → ¬D) ∈ a. Now, given RCabc and RCcc ∗ c
(P4), R2Cabc ∗ c, i.e., RCabz and RCzc ∗ c for some z ∈ KC . By RCabz,
(B → ¬D) → (A → ¬D) ∈ a and B → ¬D ∈ b, we get A → ¬D ∈ z. Ap-
plying contraposition, D → ¬A ∈ z. Therefore, by RCzc ∗ c and D ∈ c∗,
¬A ∈ c, i.e., A /∈ c∗, a contradiction. Consequently, we have RT bc ∗ x and
RT ac ∗ x∗. Finally, x is extended to a prime theory y such that RCbc ∗ y
and RCac ∗ y∗ as required. 2

In Proposition 4, we said ”[...] holds in the canonical model”. But,
which canonical model? In the proof of Proposition 4, the sentence ”if
suffixing is a theorem” is emphasized. And here is the point. On the one
hand, suffixing is not a theorem of Bconr (it is falsified by the matrix in
§4 when A = 1, B = 0, C = 0 ). But, on the other hand, it is our
conjecture that suffixing or some thesis related to it is needed in the proof
of the canonical adequacy of P4. Whence, according to this conjecture,
full reductio cannot be introduced in Bconr. Anyway, we establish in the
following section a setting to discuss the point.

7. The logics BpconR and BsconR

Consider the axiom
A10. (B → C) → [(A → B) → (A → C)]



The Logic B and the Reductio Axioms 93

Let Bpcon (Bcon plus prefixing) be the result of adding A10 to Bcon.
We remark that Bscon (Bcon plus suffixing) i.e., Bcon plus the follow-
ing axiom is an equivalent system (A10 and this axiom are equivalent by
contraposition):

A11. (A → B) → [(B → C) → (A → C)]
A Bpcon model is the same as a Bcon model but with the addition of

the postulate
P6. R2abcd ⇒ ∃x (Rbcx&Raxc)
On the other hand, a Bscon model is the same as a Bcon model but

with the addition of the postulate
P7. R2abcd ⇒ ∃x (Racx&Rbxd)
Now, P6 and P7 are the corresponding semantic postulates for A10

and A11 (see [1] or [3]). So, Bpcon and Bscon are complete in respect of
Bpcon models and Bscon models, respectively. We now define the logics
BpconR and BsconR in what follows.

The logic BpconR (BsconR) is the result of adding any of the full
reductio axioms (t1-t6) in §4. That is to say, BpconR (BsconR) is the
result of adding full reductio axioms to Bpcon (Bscon). (Note that, given
Bcon, t1-t6 are equivalent).

A BpconR model (BsconR model) is the result of adding the semantic
postulate P6 (P7) to Bconr models. We remark

Proposition 5. The postulates p1-p4 are derivable in BpconR models
and BsconR models.

Proof. Let us prove, for example, that p1 is derivable. Suppose Rabc.
Given Rcc ∗ c (P4), R2abc ∗ c. By P7, Rbc ∗ x and Raxc for some x ∈ K.
By P3, Rac ∗ x∗. 2

Proposition 6. BpconR (BsconR) is complete in respect of BpconR
models (BsconR models).

Proof. It is clear that we just have to prove that p1-p3 hold canonically.
Well, it is accomplished similarly as in Proposition 4 (in fact, it suffices to
prove that p1 (or p4) and p2 (or p3) hold canonically. See the proof of
proposition 3). 2

We finish this paper with a note. We conjectured in [2] that full
reductio could not be introduced in Bmr (see Introduction) because of the
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absence of prefixing and suffixing in B+. We also showed how to introduce
full reductio adding prefixing to B+. Interestingly enough, as discussed
in §5, this seems to be exactly the case in the logic Bconr. But in Bconr
negation is not constructive, it is not defined with a falsity constant (but
with a negative connective), it is semantically explained with the ”Routley
star” (not intuitionistically modelled) and finally, Bconr is considerably
stronger than Bmr, which, in fact, is strictly included in it.
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