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A SEMANTICAL PROOF OF THE ADMISSIBILITY OF
THE RULE ASSERTION IN SOME RELEVANT AND

MODAL LOGICS

Abstract

It is proved that the rule assertion is admissible in some relevant and modal logics

sound and complete in respect of ternary relational models of a certain type.

1. Introduction

The rule Assertion (Asser) is the following:

Asser. From A to infer (A→ B)→ B

The rule Asser is not derivable in Lewis’ modal logic S5. Consider the
following set of matrices MSI (2 and 3 are designated values).

Matrix set I (MSI):

→ 0 1 2 3 ¬
0 3 3 3 3 3
1 0 3 0 3 2
2 0 0 3 3 1
3 0 0 0 3 0

∧ 0 1 2 3
0 0 0 0 0
1 0 1 0 1
2 0 0 2 2
3 0 1 2 3

∨ 0 1 2 3
0 0 1 2 3
1 1 1 3 3
2 2 3 2 3
3 3 3 3 3

We have:
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Proposition 1. The rule Asser is not derivable in S5.

Proof: MSI verifies S5. That is, MSI satisfies the axioms of S5 and the
rule Modus ponens formulated in [1] (S5 is axiomatized without � and ♦
as primitive connectives). But it falsifies Asser when v(A) = v(B) = 2.

Nevertheless, it will be shown that Asser is admissible in a series of
relevant and modal logics including EW+ plus the contraposition axiom
(Con)

Con. (A→ B)→ (¬B → ¬A)

and the De Morgan axioms (DM1 and DM2)

DM1. (¬A ∧ ¬B)→ ¬(A ∨B)

DM2. ¬(A ∧B)→ (¬A ∨ ¬B)

The logic EW+ is the contractionless positive fragment of the logic of
entailment E. And the logics in the series referred to above have to present
a certain structure.

The proof here provided is based upon the models for E defined in [3].

2. A-models

The expression “A-model” is intended to abbreviate “model in which the
rule Assertion can be proved admissible”. We begin by defining A-models
(cf. [3], p. 411).

Definition 1. An A-model is a structure (K, O, P, R, ∗, �) where O and
P are subsets of K, R is a ternary relation on K and ∗ a unary operation
on K subject to the following definitions and postulates for all a, b, c ∈ K:

d1. a ≤ b =df (∃x ∈ O)Rxab

d2. a = b =df (a ≤ b & b ≤ a)

d3. R2abcd =df (∃x ∈ K)(Rabx & Rxcd)
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P1. a ≤ a

P2. (a ≤ b & Rbcd)⇒ Racd

P3. R2abcd⇒ (∃x ∈ K)(Racx & Rbxd)

P4. (∃x ∈ P )Raxa

P5. (a ∈ P & Rabc)⇒ b ≤ c

P6. Rabc⇒ Rac ∗ b∗

On the other hand, � is a relation from K to the formulas of the proposi-
tional language such that the following conditions are satisfied for all propo-
sitional variables p, wff A, B and a ∈ K:

(i). (a ≤ b & a � p)⇒ b � p

(ii). a � A ∧B iff a � A and a � B

(iii). a � A ∨B iff a � A or a � B

(iv). a � A→ B iff for all b, c ∈ K (Rabc & b � A)⇒ c � B

(v). a � ¬A iff a∗ 2 A

Then, validity is defined as follows.

Definition 2 (A-validity). Let A be a class of A-models, A is A-valid
(�A A) iff a � A for all a ∈ O in all A-models.

Now, the following holds for any model in any class A of A-models.

Proposition 2. For any a, b ∈ K and wff A, (a ≤ b & a � A)⇒ b � A.

Proof: Induction on the length of A. The conditional case is proved with
P2 and the negation case with a ≤ b⇒ b∗ ≤ a∗, an immediate consequence
of P6 (cf. [3], p.412).

Remark 1. We note that the postulate

P7. R2abcd⇒ (∃x ∈ K)(Rbcx & Raxd)

holds in any A-model (cf. [2]).

Proposition 3. For any wff A, B, �A A → B iff (a � A ⇒ a � B) for
any a ∈ K in all models in A.
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Proof: By P1, d1 and Proposition 2 (cf. [3], p.412).

3. P -validity

We set:

Definition 3. Let A be a class of A-models and A a wff. A is PA-valid
(�PA A) iff a � A for all a ∈ P in all A-models.

Consider now the rules Adjunction (Adj)

Adj. From A and B to infer A ∧B

and Modus ponens (MP)

MP. From A and A→ B to infer B

Let A be a class of A-models. We have:

Lemma 1. Adj. preserves PA-validity. That is, for any wff A, B, if �PA A
and �PA B, then �PA A ∧B.

Proof: Immediate by clause (ii) in Definition 1.

Lemma 2. MP preserves PA-validity. That is, for any wff A, B, if �PA

A→ B and �PA A, then �PA B.

Proof: Let a ∈ P in an arbitrary model in A. By P4, (1) Raxa for some
x ∈ P . By hypothesis, (2) a � A→ B and (3) x � A. Therefore, (4) a � B
by (1), (2), (3) and clause (iv) in Definition 1.

Lemma 3. For any wff A, B, �A A→ B ⇒ �PA A→ B.

Proof: Suppose, for reductio, that there is a ∈ P in some model A such
that for wff A, B, (1) �A A → B but (2) a 2 A → B. By clause (iv)
(Definition 1), there are b, c ∈ K such that (3) Rabc, (4) b � A and (5)
c 2 B. By (3) and P5, (6) b ≤ c. So, (7) c � A by (4), (6) and Proposition 2.
Then, (8) c � B by (1), (7) and Proposition 3. But (5) and (8) contradict
each other.
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4. Admissibility of Asser

Let L be a propositional language with the connectives → (conditional),
∧ (conjunction), ∨ (disjunction) and ¬ (negation). And let S be a logic
defined upon L. S is defined in a Hilbert-style way, all axioms being of
an implicative form and Adj and MP the sole rules of derivation (A is of
implicative form iff A is of the form B → C where B and C are wff).
Furthermore, let A be a class of A-models and S be sound and complete
with respect to A. That is, `S A iff �A A, where `S A is understood in the
standard way, i.e., `S A iff there is a finite sequence of wff B1, ..., Bn such
that each Bi(1 ≤ i ≤ n) is either an axiom or the result of applying Adj
or MP to two previous formulas in the sequence, and A is Bi. And �A A
iff a � A for all a ∈ O in each model in A (cf. Definition 2). Then, it is
proved:

Lemma 4. For any wff A, if `S A then �PA A.

Proof: Induction on the length of the proof of A. And it is immediate
by Lemma 1, Lemma 2 and Lemma 3: all axioms are PA-valid (Lemma 3)
and rules Adj and MP preserves PA-validity (Lemma 1 and Lemma 2).

Finally, we have:

Theorem 1 (Admissibility of Asser). Let S be a logic defined upon the
propositional language L, as indicated above. Then, Asser is admissible in
S. That is, if A is a theorem of S, then (A→ B)→ B is a theorem of S.

Proof: Suppose (1) `S A and (2) a � A → B for a ∈ K in a given
model in A. By P4, there is some x ∈ P such that (3) Raxa. By (1)
and Lemma 4, (4) x � A. So, (5) a � B by (2), (3), (4) and clause (iv)
in Definition 1. Then, �A (A → B) → B by (2), (5) and Proposition 3.
Finally, `S (A→ B)→ B by completeness of S.

5. EWM, the logic sound and complete with respect
to the class A of minimal definable A-models

We set:

Definition 4 (EWM-models). An EWM-model is a structure (K, O, P,
R, ∗, �) where K, O, P, R, ∗, � are defined exactly as in Definition 1.
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Consider now the following logic EWM.
Axioms

A1. A→ A

A2. (A→ B)→ [(B → C)→ (A→ C)]

A3. (A ∧B)→ A / (A ∧B)→ B

A4. [(A→ B) ∧ (A→ C)]→ [A→ (B ∧ C)]

A5. [[(A→ A) ∧ (B → B)]→ C]→ C

A6. A→ (A ∨B) / B → (A ∨B)

A7. [(A→ C) ∧ (B → C)]→ [(A ∨B)→ C]

A8. [A ∧ (B ∨ C)]→ [(A ∧B) ∨ (A ∧ C)]

A9. (A→ B)→ (¬B → ¬A)

A10. (¬A ∧ ¬B)→ ¬(A ∨B)

A11. ¬(A ∧B)→ (¬A ∨ ¬B)

Rules: MP and Adj.
EWM could intuitively be described as the result of introducing nega-

tion by means of A9, A10 and A11 in EW+, the contractionless positive
fragment of the logic of entailment E. Now, an easy consequence of the
soundness and completeness theorems for E proved in [3] is the following.

Proposition 4. `EWM
A iff �EWM

A.

That is, EWM is sound and complete in respect of EWM-models.
On the other hand, EWM-models form a class A of A-models (indeed,

the class of minimal definable A-models in the sense that an EWM-model
is an A-model, but A-models to which EWM-models are not equivalent
can be defined —as shown in the following section). Therefore, given the
formulation of EWM, we have:

Proposition 5. Asser is admissible in EWM.

Proof: By Theorem 1, given that EWM is sound and complete in re-
spect of a class of A-models (EWM-models), all its axioms are implicative
formulas, and MP and Adj are the sole rules of derivation.
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6. Some extensions of EWM

It follows from Theorem 1 that if S is a logic fulfilling the requirements for
applying Theorem 1, then Asser is admissible in S. In this section we shall
consider some extensions of EWM in which Asser is admissible.

Consider the following axioms and semantical postulates.

A12. [A→ (A→ B)]→ (A→ B)

A13. A→ (A→ A)

A14. B → (A→ A)

A15. A→ ¬¬A
A16. ¬¬A→ A

A17. (A→ ¬A)→ ¬A
PA12. Rabc⇒ R2abbc

PA13. Rabc⇒ a ≤ c or b ≤ c

PA14. Rabc⇒ b ≤ c

PA15. a ≤ a ∗ ∗
PA16. a ∗ ∗ ≤ a

PA17. Raa ∗ a

We have:

Proposition 6. Given the logic EWM and EWM-models, PA12, PA13,
PA14, PA15, PA16 and PA17 are the corresponding postulates (cp) to A12,
A13, A14, A15, A16 and A17, respectively. That is, given the logic EWM,
each postulate can be shown to hold in the corresponding canonical model
by using the respective axiom, and given EWM-models, each axiom can
be shown to be valid in the corresponding extended models by using the
respective postulate.

Proof: It can be found in (or easily derived from) [2].

Proposition 7. Let S be any extension of EWM with any selection of
A12-A17, and Σ-models be defined by adding the cp to the axiom(s) added.
Then, (1) any Σ-model is an A-model; (2) S is sound and complete in
respect of Σ-models.
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Proof: (1) It is obvious as each model is defined by restricting EWM-
models. (2) Immediate by Proposition 4 and Proposition 6.

Asser is admissible in any of the logics in Proposition 7. That is:

Proposition 8. Let S be any extension of EWM with any selection of
A12-A17. Then Asser is admissible in S.

Proof: Given that all axioms of S are implicative formulas and that MP
and Adj are the sole rules of inference, Proposition 8 follows from Propo-
sition 7(2) and Theorem 1.

We note that among the logics described in Proposition 8, the logic
of entailment E (EWM plus A12, A15, A16 and A17) and Lewis’ S4 (E
plus A14) are to be found (S4 is axiomatized in [1] without � and ♦ as
primitive connectives and without Adj as a primitive rule. But Adj is, of
course, admissible in both S4 and S5).

The paper is ended with two remarks. The first is contained in the
following proposition.

Proposition 9. Let S be any extension of EWM meeting the conditions
of Theorem 1. That is, S is sound and complete with respect to a class of
A-models; all axioms of S are implicative formulas and MP and Adj are the
sole rules of derivation. Furthermore, A14 is derivable in S. Then, rule K,
i.e.,

K. From A to infer B → A

is admissible in S.

Proof: Suppose (1) `S A. By Theorem 1, Asser is admissible in S. So,
(2) `S (A → A) → A. Then, (3) `S B → A follows by (2), A2, A14 and
MP.

The second remark is the following. Suppose that S is an extension
of EWM in which either not all axioms are implicative formulas or else S
has one or more rules of derivation in addition to MP and Adj. Then, it
may be the case that Asser is not admissible in S. We shall provide an
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example. Let EWMPEM be the result of adding the Principle of excluded
middle (PEM)

PEM. A ∨ ¬A

to EWM. And consider the following postulate

PPEM. a ∈ O ⇒ a∗ ≤ a

We have:

Proposition 10. PPEM is the cp to PEM.

Proof: Similar to that of Proposition 6.

And, consequently:

Proposition 11. EWMPEM is sound and complete in respect of EWMPEM-
models. (An EWMPEM-model is a EWM-model in which PPEM holds).

Proof: Immediate by Proposition 4 and Proposition 10.

Now, an EWMPEM-model is clearly an A-model, but as PEM is not of
implicative form, it turns out that the following is provable.

Proposition 12. Asser is not admissible in EWMPEM.

Proof: Consider the following set of matrices MSII (all values but 0 are
designated):

Matrix set II (MSII):

→ 0 1 2 3 ¬
0 3 3 3 3 3
1 0 3 3 3 2
2 0 0 3 3 1
3 0 0 0 3 0

∧ 0 1 2 3
0 0 0 0 0
1 0 1 1 1
2 0 1 2 2
3 0 1 2 3

∨ 0 1 2 3
0 0 1 2 3
1 1 1 2 3
2 2 2 2 3
3 3 3 3 3

Then, the logic EWMPEM is verified by MSII, but [(A ∨ ¬A) → (A ∨
¬A)]→ (A ∨ ¬A) is falsified when v(A) = 1.
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