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ABSTRACT
The logic BM is Sylvan and Plumwood’s minimal De Morgan logic. The aim of this
paper is to investigate extensions of BM endowed with a quasi-Boolean negation
of intuitionistic character included in 3-valued logic G3 and/or 3-valued logic S5G3.
Unreduced Routley-Meyer ternary relational semantics are provided for all the logics
defined in the paper.
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1. Introduction

This paper is a preliminary study of quasi-Boolean negation (QB-negation) of intu-
itionistic character in the context of the Routley-Meyer ternary relational semantics
(RM-semantics). As it is known, “possible worlds” (“set-ups” or whatever the name is
preferred) can be inconsistent, incomplete or both in standard RM-semantics, that is,
in RM-semantics for relevant logics (cf. Routley, Meyer, Plumwood, & Brady, 1982;
Brady, 2003, and references therein). However, in this paper, we focus on RM-semantics
with models whose elements are always consistent but not necessarily complete pos-
sible worlds, as it is the case with (binary relational) Kripke models for propositional
intuitionistic logic.

In RM-semantics, negation is customarily interpreted with the Routley operator or
Routley star (∗), which is adequate for modelling only De Morgan negation (DM-
negation) and extensions thereof in the sense that it cannot fail to validate, by
virtue of its own definition, the De Morgan laws (i.e., ¬(A ∨ B) ↔ (¬A ∧ ¬B) and
¬(A ∧ B) ↔ (¬A ∨ ¬B) and the contraposition rule (i.e., A → B ⇒ ¬B → ¬A —cf.
Definitions 2.1-2.3 on the logical language used in the paper and related preliminary
notions). Consequently, the type of QB-negation we are going to investigate can be
considered from an intuitive point of view, as a DM-negation of an intuitionistic, or
better, “paraintuitionistic” or “superintuitionistic” character. (An anonymous referee
of the JANCL points out that “paracomplete” could be better suited than “intuition-
istic” to characterize the family of logics considered.) Let us look into it with more
detail. We begin by examining how “positive” (i.e., negationless) relevant logic can
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proof-theoretically be expanded with Boolean negation (B-negation).
B-negation can be introduced in a positive relevant logic L+ by adding to it the

axiom “Double Negation Elimination” (DNE), ¬¬A → A, together with the rule
“Antilogism” (Ant) (A ∧ B) → ¬C ⇒ (A ∧ C) → ¬B. (Cf. Routley et al., 1982, p.
371; Meyer & Routley, 1973; Meyer & Routley, 1974.)

In Routley et al. (1982, pp. 371-372), it is proved that the “E Contradictione Quodli-
bet” axiom (ECQ), (A∧¬A)→ B, and the “Conditioned Principle of Excluded Mid-
dle” (CPEM), B → (A ∨ ¬A), are theorems of any relevant logic L including Routley
and Meyer’s basic positive logic B+ (cf. Definition 2.4, below) plus DNE and Ant. But
it would not be difficult to show that the proof provided by Routley et al. could be
carried out within the weaker (than B+) positive fragment, FDE+, of Anderson and
Belnap’s First Degree Entailment logic, FDE (cf. Anderson & Belnap, 1975, pp. 158,
ff.). Moreover, in Proposition A1 in the appendix, it is proven that DNE and Ant are
derivable within FDE+ plus the axioms ECQ and CPEM. Consequently, positive rel-
evant logics can equivalently be expanded with B-negation by adding to FDE+ either
DNE and Ant or else ECQ and CPEM.

Thus, we see, the axioms ECQ and CPEM are the two pillars upon which B-negation
can be built given such a weak positive logic as FDE+. From the point of view of
possible-worlds semantics, the ECQ axiom can be viewed as an expression of the
thesis that all possible-worlds are consistent (no possible-world contains a proposition
and its negation). The CPEM, in its turn, would express that all possible-worlds are
complete (no possible-world lacks both a proposition and its negation).

This way of introducing B-negation in FDE+ suggests the definition of two families
of quasi-Boolean negation (QB-negation) expansions of logics including FDE+. One
of them, intuitionistic in character, has the ECQ axiom but not the CPEM one; the
other one, dual intuitionistic in nature, has the CPEM axiom, but not the ECQ one.
Let us generally refer by H-negation and DH-negation to the former and latter type
of negation, respectively (“H” stands for Heyting; “DH”, for Dual H-negation).

From a semantical point of view, H-negation is characterized by RM-models com-
posed only by consistent, but not necessarily complete, possible worlds, as it was
pointed out above, whereas DH-negation has RM-models with complete, although not
necessarily consistent possible-worlds. RM-models where possible-worlds are always
consistent and complete determine, of course, B-negation, which, strange as it may
seem, can be added to relevant logics included in Anderson and Belnap’s logic of the
relevant conditional R without breaking down the relevance properties of the positive
fragments (cf. Routley et al., 1982, §4 and references therein).

Well then, now it is important to remark that Sylvan and Plumwood’s Minimal
De Morgan logic BM is the minimal logic interpretable with RM-semantics (cf. Sylvan
& Plumwood, 2003; Routley et al., 1982; Robles & Méndez, 2018). Therefore, we
will investigate in the sequel the logic Hb, the minimal extension of BM with H-
negation, and a wealth of extensions of Hb. Concerning these Hb-extensions, we will
concentrate on two logics and their subsystems: Gödelian 3-valued logic G3 and H-
negation expansion of the 3-valued extension of Lewis’ positive modal logic S5+, S5G3

(cf. Definitions A2, A3 and A4 in the appendix). But these two strong logics and
many of their subsystems are here treated as a way of an example of how to use
the RM-semantics defined in the paper to interpret many other (possibly interesting)
extensions of Hb endowed with the type of H-negation we have modelled (in this sense,
the paper can be seen as a study on applied non-classical logic). Of course, in none of
these logics are the DNE and CPEM axioms provable (cf. the appendix), but the ECQ
axiom and the axiom “Double Negation Introduction” (DNI), A→ ¬¬A, are theorems
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in all of them (cf. Proposition 2.7). Also, it has to be remarked that the “Principle
of Excluded Middle” (PEM), A ∨ ¬A, intuitionism’s bête noire, is a theorem of some
of the logics included in S5G3. Unreduced Routley-Meyer ternary relational semantics
is defined for each one of the logics introduced in the paper (cf. Routley et al., 1982;
Brady, 2003 and references therein; cf. also §6).

RM-semantics is a ternary relational semantics which can essentially be divided in
two types: (a) RM-semantics with a set of designated points w.r.t. which validity of
formulas is decided (RM1-semantics); (b) RM-semantics without a set of designated
points and where validity of formulas is decided w.r.t. the set of all points (RM0-
semantics). As for RM1-semantics, we have reduced RM1-semantics, where the set
of designated points is reduced to a singleton, and unreduced RM1-semantics. RM0-
semantics is not adequate to interpret relevant logics since it necessarily validates
paradoxes of relevance. RM1-semantics, in its turn, can interpret both relevant and
non-relevant logics. In the present paper, unreduced RM1-semantics is provided for all
the extensions of Hb we have defined, as remarked above.

The family of logics investigated in the following pages is different from the re-
lated families of logics we have previously studied in (Robles & Méndez 2014; Robles
& Méndez, 2015; Robles & Méndez, 2018). In Robles & Méndez (2018), both RM0-
semantics and unreduced RM1-semantics are used, but negation is introduced via a
falsity constant instead of using the Routley operator. In (Robles & Méndez, 2014;
Robles & Méndez, 2015), RM0-semantics is the tool we employed. Moreover, the min-
imal logics considered, BKM in Robles & Méndez (2014) and HM in Robles & Méndez
(2015), are not included in many of the subsystems of G3 and in none of those con-
tained in S5G3.

The structure of the paper is as follows. In §2, the minimal logic considered in the
paper, Hb, and a wealth of its extensions included in either G3 or S5G3 are defined.
Hb is the basic extension with an H-negation of Sylvan and Plumwood’s minimal
De Morgan logic BM. In §3, unreduced Routley-Meyer semantics is provided for Hb
and its extensions defined in §2. In order to define Routley-Meyer semantics for the
logics defined in §2, we generally follow the terminology, definitions and strategy of
the fundamental work on Routley-Meyer type ternary relational semantics, that is,
Chapter 4 of Routley et al. (1982). Weak soundness theorems are proved for all these
logics. In §4, we prove some preliminary propositions and lemmas upon which the
completeness theorems are established. In §5, (weak) completeness theorems for all the
logics defined in §2 are proved. In §6, we point out some remarks on reduced Routley-
Meyer semantics and strong completeness. An appendix has been added where some
facts stated throughout the paper are proved.

2. The basic logic Hb and its extensions

We begin by defining some basic notions as used in the paper.

Definition 2.1 (Language). The propositional language consists of a denumerable set
of propositional variables p0, p1, ..., pn, .., and some or all of the following connectives
→ (conditional), ∧ (conjunction), ∨ (disjunction) and ¬ (negation). The biconditional
(↔) and the set of wffs are defined in the customary way. A,B etc. are metalinguistic
variables.

Definition 2.2 (Logics). A logic L is a structure (L, `L) where L is a propositional
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language and `L is a (proof-theoretical) consequence relation defined on L by a set
of axioms and a set of rules of inference. The notions of ‘proof’ and ‘theorem’ are
understood as it is customary in Hilbert-style axiomatic systems (Γ `L A means that
A is derivable from the set of wffs Γ in L; and `L A means that A is a theorem of L).

Definition 2.3 (Extensions and expansions of a propositional logic L). Let L and L′
be two propositional languages. L′ is a strengthening of L if the set of wffs of L is
a proper subset of the set of wffs of L′. Next, let L and L′ be two logics built upon
the propositional languages L and L′, respectively. Moreover, suppose that all axioms
of L are theorems of L′ and all primitive rules of inference of L are provable in L′.
Then, L′ is an extension of L if L and L′are the same propositional language; and L′

is an expansion of L if L′ is an strengthening of L. An extension L′ of L is a proper
extension if L is not an extension of L′.

The minimal logic considered in the paper is the logic Hb, the basic extension with
H-negation of Sylvan and Plumwood’s minimal logic BM.

Definition 2.4 (The logic BM). Sylvan and Plumwood’s minimal logic BM can be
axiomatized with the following axions and rules of inference (cf. Sylvan & Plumwood,
2003):

Axioms: (A1) A → A; (A2) (A ∧ B) → A / (A ∧ B) → B; (A3) [(A → B) ∧ (A →
C)]→ [A→ (B∧C)]; (A4) A→ (A∨B) / B → (A∨B); (A5) [(A→ C)∧(B → C)]→
[(A∨B)→ C]; (A6) [A∧ (B∨C)]→ [(A∧B)∨ (A∧C)]; (A7) (¬A∧¬B)→ ¬(A∨B);
(A8) ¬(A ∧B)→ (¬A ∨ ¬B).

Rules of inference: (Adjunction —Adj) A & B ⇒ A ∧ B; (Modus Ponens —MP)
A → B & A ⇒ B; (Suffixing —Suf) A → B ⇒ (B → C) → (A → C); (Prefixing —
Pref) B → C ⇒ (A→ B)→ (A→ C); (Contraposition —Con) A→ B ⇒ ¬B → ¬A.

We point out that Routley and Meyer’s basic positive logic B+ can be axiomatized
with A1-A6, Adj, MP, Suf and Pref (cf. Routley et al., 1982).

We note the following remark:

Remark 2.5 (The De Morgan laws). The De Morgan laws (T1) ¬(A∨B)↔ (¬A∧¬B)
and (T2) ¬(A∧B)↔ (¬A∨¬B) are provable in BM (by A2-A5, A7, A8 and Con; cf.
Sylvan & Plumwood, 2003).

The logic Hb is defined as follows.

Definition 2.6 (The basic logic Hb). The basic logic Hb is axiomatized by adding
(A9) C → [B → ¬(A ∧ ¬A)] and (A10) C → [(A ∧ ¬A)→ B] to BM.

We note that the ECQ axiom (A ∧ ¬A) → B is not sufficient for axiomatizing H-
negation in weak logics (cf. Proposition 2.9 below and §4), but it could be sufficient
if more connectives were added to the formal language of Hb (cf. §7: ‘Concluding
Remarks’). Also, we remark the following proposition.

Proposition 2.7 (Some theorems of Hb). The following are provable in Hb: (T3)
(ECQ axiom) (A∧¬A)→ B; (T4) Principle of Non-Contradiction (PNC) ¬(A∧¬A);
(T5) Principle of Testability (PTE) ¬A ∨ ¬¬A; (T6) (DNI) A→ ¬¬A.

Proof. T3 and T4 are immediate by A10 and A9, respectively; and T5, by T2 and
T4. Then, T6 is proved as follows: we have (1) A → ¬(A ∧ ¬A), by A9, and (2)
(A ∧ ¬A) → ¬¬A by A10. Then, (3) ¬(A ∧ ¬A) → (¬A ∨ ¬¬A) by T2, and next (4)
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A→ (¬A∨¬¬A) by 1 and 3. Now we use (5) A→ [(A∨¬¬A)∧ (¬A∨¬¬A)] and (6)
[¬¬A ∨ (A ∧ ¬A)]→ (¬¬A ∨ ¬¬A), which are immediately provable by B+, 4 and 2,
respectively. Finally, we get (7) A→ (¬¬A∨¬¬A) by 5 and 6, and then (8) A→ ¬¬A
by 7 and B+.

In what follows we elaborate on the relationship between A9 and A10 and the
insufficiency of the ECQ axiom, (A∧¬A)→ B, for axiomatizing H-negation in certain
logics. In Proposition 2.8 it is proved that A9 and A10 are independent in the context
of Routley and Meyer’s basic logic B. In Proposition 2.9, it is shown that A9 and A10
are not derivable from Anderson and Belnap’s logic of entailment E plus the ECQ
axiom. In Proposition 2.11, it is proved that A9 and A10 are theorems of DW plus
the ECQ and Assertion axioms. By a1, a2, ..., a50 we refer to the items in Definition
2.12 below.

Proposition 2.8 (Independence of A9 and A10 given B). A9 and A10 are independent
in the context of Routley and Meyer’s basic logic B (B is the result of adding the double
negation axioms, A→ ¬¬A and ¬¬A→ A, to BM —notice that A7 and A8 are then
not independent).

Proof. (1) A10 is not derivable from B plus A9. Consider the following set of truth-
tables t1 (designated values are starred in this set and in the sets of truth-tables to
follow):

→ 0 1 2 3
0 2 2 2 3
1 0 2 0 3
*2 0 0 2 3
*3 0 0 0 3

∧ 0 1 2 3
0 0 0 0 0
1 0 1 0 1
*2 0 0 2 2
*3 0 1 2 3

∨ 0 1 2 3
0 0 1 2 3
1 1 1 3 3
*2 2 3 2 3
*3 3 3 3 3

¬
0 3
1 2
*2 1
*3 0

This table verifies B plus A9 but falsifies r → [(p ∧ ¬p) → q] for any assignment v
such that v(p) = 1 = v(q) = v(r) = 1. (p, q, r are distinct propositional variables in
this proof and the proofs to follow.)

(2) A9 is not derivable from B plus A10. We use the following set of truth tables
t2: tables for ∧,∨ and ¬ are as in the set t1 and the table for → is as follows:

→ 0 1 2 3
0 3 3 3 3
1 0 2 0 3
*2 0 0 2 2
*3 0 0 0 2

This set verifies B plus A10 but falsifies r → [q → ¬(p ∧ ¬p)] for any assignment v
such that v(p) = v(q) = v(r) = 3.

Proposition 2.9 (A9 and A10 are not provable in E plus ECQ). A9 and A10 are
not provable in E plus the ECQ axiom, (A ∧ ¬A)→ B. (E is Anderson and Belnap’s
logic of entailment and can be axiomatized by adding to B —cf. Proposition 2.8— a2,
a5, a10, a35 and a36. Notice that the rule Con is then not independent).

Proof. Consider the following set of truth-tables t3: tables for ∧,∨ and ¬ are as in
the set t1, and the table for → is as follows:
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→ 0 1 2 3
0 2 2 2 2
1 0 2 0 2
*2 0 0 2 2
*3 0 0 0 2

This set t3 verifies E plus the ECQ axiom, but falsifies r → [q → ¬(p ∧ ¬p)] and
r → [(p ∧ ¬p)→ q] for any assignment v such that v(p) = v(q) = v(r) = 1.

We note the following remark on Propositions 2.8 and 2.9.

Remark 2.10 (On Propositions 2.8 and 2.9). We note that the result in Proposition
2.8 holds for some considerable extensions of B: sets of truth-tables t1 and t2 verify
such theses as a1, a4, a5, a10, a11, a32′, a33, a34, a35, a49 and a50. In addition, t1
verifies a18, and t2, a17. On the other hand, t3 can be used to show that the result in
Proposition 2.9 can be extended to some considerable extensions of E such as E-Mingle
(cf. Anderson & Belnap, 1975) or those built by any selection of the following axioms
(verified by t3): the characteristic S3-axiom, (A→ B)→ [(C → D)→ (A→ B)], the
CPEM axiom, B → (A ∨ ¬A), a17, a18 and a32′, restricted disjunctive Peirce law,
characteristic of the positive fragment of Lewis’ S5 (cf. Hacking, 1963).

Proposition 2.11 (A9, A10 are prov. in DW plus ECQ ax. & a14). A9 and A10 are
provable in DW plus the ECQ axiom, (A ∧ ¬A) → B, and the Assertion axiom a14,
A → [(A → B) → B] (DW is axiomatized by adding a36 to B —notice that the rule
Con is then derivable.)

Proof. (1) A10 is provable by (A ∧ ¬A) → (C → B) and C → [(C → B) → B]; (2)
A9 is then provable by A10, the contraposition axiom a36 and the DNI axiom.

The section is ended by introducing the set of extensions of Hb considered in the
present paper. These extensions are defined from the axioms and rule displayed in
Definition 2.12 below. All axioms and the rule are provable in G3 and/or S5G3 (cf.
Definitions A2, A3 and A4 in the appendix). Unreduced Routley-Meyer semantics
w.r.t. which each one of these extensions is (weakly) sound and complete is provided
in the following section.

Definition 2.12 (A set of theses and a rule of G3 and/or S5G3). The following theses
and rule are provable in G3 and/or S5G3: Axioms a1-a31, a33-a48 are provable in
Gödelian 3-valued logic G3, while a1-a13, a17, a20-a26, a32, a32′, a33-a45, a48-a50 in
3-valued logic S5G3.

a1. [(A→ B) ∧ (B → C)]→ (A→ C)

a2. (B → C)→ [(A→ B)→ (A→ C)]

a3. (A→ B)→ [(B → C)→ (A→ C)]

a4. [A ∧ (A→ B)]→ B

a5. [A→ (A→ B)]→ (A→ B)

a6. A→ [[A→ (A→ B)]→ B]

a7. [A→ (B → C)]→ [(A→ B)→ (A→ C)]

a8. (A→ B)→ [[A→ (B → C)]→ (A→ C)]

a9. [A→ (B → C)]→ [(A ∧B)→ C]
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a10. [[(A→ A) ∧ (B → B)]→ C]→ C

a11. A⇒ (A→ B)→ B

a12. A→ [[A→ (B → C)]→ (B → C)]

a13. [A→ [B → (C → D)]]→ [B → [A→ (C → D)]]

a14. A→ [(A→ B)→ B]

a15. [A→ (B → C)]→ [B → (A→ C)]

a16. (A ∧B)→ [[A→ (B → C)]→ C]

a17. (A→ B)→ [[A ∧ (B → C)]→ C]

a18. [A ∧ (B → C)]→ [(A→ B)→ C)]

a19. B → [[A→ (B → C)]→ (A→ C)]

a20. A→ (A→ A)

a21. A→ [B → (A ∨B)]

a22. (A→ B) ∨ (B → A)

a23. [A→ (B ∨ C)]→ [(A→ B) ∨ (A→ C)]

a24. [(A ∧B)→ C]→ [(A→ C) ∨ (B → C)]

a25. B → (A→ A)

a26. (A→ B)→ [C → (A→ B)]

a27. A→ (B → A)

a28. A→ [B → (C → A)]

a29. (A ∨B)→ [(A→ B)→ B]

a30. A→ [B → (A ∧B)]

a31. [(A ∧B)→ C]→ [A→ (B → C)]

a32. A ∨ (A→ B)

a32′. (A→ B) ∨ [(A→ B)→ C]

a33. [(A→ B) ∧ ¬B]→ ¬A
a34. (A ∧ ¬B)→ ¬(A→ B)

a35. (A→ ¬A)→ ¬A
a36. (A→ B)→ (¬B → ¬A)

a37. A→ (¬A→ B)

a38. ¬A→ (A→ B)

a39. ¬B → [¬A ∨ ¬(A→ B)]

a40. (A ∨ ¬B) ∨ (A→ B)

a41. (¬A ∧B)→ (A→ B)

a42. ¬(A→ B)→ (A ∨ ¬B)

a43. [¬(A→ B) ∧ (¬A ∧B)]→ C

a44. ¬A→ (B → ¬A)

a45. ¬(A→ B)→ (B → A)

a46. ¬(A→ B)→ ¬B
a47. (A ∨B)→ (¬A→ B)
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a48. (A ∨ ¬B)→ (¬A→ ¬B)

a49. A→ [B ∨ ¬(A→ B)]

a50. A ∨ ¬A

Concerning the extensions of Hb just defined, we note the following remark.

Remark 2.13 (On H-negation extensions of B). Notice that Routley and Meyer’s
basic logic B (cf. Proposition 2.8) cannot be extended with H-negation on pain of
collapse into B-negation: by using the DNE axiom, H-negation immediately collapses
into B-negation.

3. RM-semantics for extensions of Hb

In what follows, by an EHb-logic we mean an extension of the basic logic Hb with some
subset of a1-a50 in Definition 2.12 provable in either G3 or else in S5G3. Notice that B+

plus a7, a27, a36 and a37 is an axiomatization of propositional intuitionistic logic, H,
included in G3. But addition of a50 to H axiomatizes classical propositional logic. We
begin by defining EHb-models for extensions of Hb together with the accompanying
definitions of truth and validity.

Definition 3.1 (EHb-models). An EHb-model, M, is a structure with at least the
following items: (a) A set K and a subset of it, O. (b) A ternary relation R and a unary
operation ∗ defined on K subject at least to the following definitions and postulates
for all a, b, c, d ∈ K: (d1) a ≤ b =df ∃x ∈ O Rxab; (d1′) a = b =df a ≤ b & b ≤ a; (d2)
R2abcd =df ∃x ∈ K(Rabx & Rxcd); (P1) a ≤ a; (P2a) (a ≤ b & Rbcd) ⇒ Racd;
(P2b) (a ≤ b & b ≤ c) ⇒ a ≤ c; (P2c) (d ≤ b & Rabc) ⇒ Radc; (P2d)
(c ≤ d & Rabc)⇒ Rabd; (P3) a ≤ b⇒ b∗ ≤ a∗; (P4) a ≤ a∗. (c) A valuation relation
� from K to the set of all wffs such that the following conditions (clauses) are satisfied
for every propositional variable p, wffs A,B and a ∈ K: (i) (a ≤ b & a � p)⇒ b � p;
(ii) a � A ∧B iff a � A and a � B; (iii) a � A ∨B iff a � A or a � B; (iv) a � A→ B
iff for all b, c ∈ K, (Rabc & b � A)⇒ c � B; (v) a � ¬A iff a∗ 2 A.

Additional elements of M are a set of semantical postulates Pj1, ..., Pjn.
Structures of the form (O,K,R, ∗,�) satisfying d1, d1′, d2, P1, P2a, P2b, P2c,

P2d, P3, P4 and clauses (i), (ii), (iii), (iv) and (v) are the basic structures and in
fact characterize the logic Hb (they are labelled Hb-models). Introduction of addi-
tional postulates serves to determine extensions and expansions of Hb interpretable in
unreduced Routley-Meyer semantics.

Definition 3.2 (Truth). Let a class of EHb-modelsM be defined and M ∈M. A wff
A is true in M (in symbols, �M A) iff a � A for all a ∈ O.

Definition 3.3 (Validity). Let a class of EHb-modelsM be defined. A wff A is valid
in M (in symbols, �M A) iff A is true in every M ∈M.

We note the following proposition.

Proposition 3.4 (A couple of semantical postulates). Let a class of EHb-models M
be defined. Then, the following semantical postulates P4a and P4b are provable in any
M ∈M: (P4a) a∗ ≤ a∗∗; (P4b) a ≤ a∗∗.

Proof. P4a is immediate by P4; P4b follows immediately by P4, P4a and P2b.
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Now, we need to prove that all theorems of Hb are EHb-valid, i.e., valid in any
class of EHb-models M. But, given weak soundness of BM w.r.t. EBM-models (cf.
Sylvan & Plumwood, 2003) and, so, w.r.t. EHb-models, it is clear that we only have
to show the EHb-validity of A9 and A10 in order to prove that all theorems of Hb are
EHb-valid. The following two useful lemmas are employed without mentioning them
in the soundness proofs to follow.

Lemma 3.5 (Hereditary Lemma). For any EHb-model and a, b ∈ K and wff A,
(a ≤ b & a � A)⇒ b � A.

Proof. Induction on the length of A. The conditional case is proved with P2a and
the negation case is proved with P3.

Lemma 3.6 (Entailment Lemma). Let a class of EHb-models M be defined. For any
wffs A,B, �M A→ B iff (a � A⇒ a � B for all a ∈ K) in all M ∈M.

Proof. From left to right, by P1; from right to left, by Lemma 3.5.

Proposition 3.7 (A9 and A10 are EHb-valid). Let M be a class of EHb-models.
Then, A9 and A10 are valid in M.

Proof. Let M ∈M. We prove that A9 and A10 are true in M.
(a) A9, C → [B → ¬(A ∧ ¬A)], is true in M : For reductio, suppose that there are

wffs A,B,C and a ∈ K in M such that (1) a � C but (2) a 2 B → ¬(A ∧ ¬A). Then,
we have b, c ∈ K in M such that (3) Rabc, (4) b � B, (5) c 2 ¬(A∧¬A), i.e., (6) c∗ � A
and (7) c∗ � ¬A. By 7 we get (8) c∗∗ 2 A. But by P4a and 6, we have (9) c∗∗ � A,
contradicting 8.

(b) A10, C → [(A ∧ ¬A)→ B], is true in M : For reductio, suppose that there are
wffs A,B,C and a ∈ K in M such that (1) a � C but (2) a 2 (A ∧ ¬A) → B. Then,
there are b, c ∈ K in M such that (3) Rabc, (4) b � A ∧ ¬A and c 2 B. Given 4, we
have (5) b � A and (6) b∗ 2 A, which is impossible by P4.

Once Proposition 3.7 is proved, we immediately have the following corollary.

Corollary 3.8 (All theorems of Hb are EHb-valid). For any wff A, if `Hb A, then A
is EHb-valid (i.e., valid in any class of EHb-models).

Proof. Immediate, given soundness of BM w.r.t. EBM-models (cf. Sylvan & Plum-
wood, 2003; cf. Definition 3.1 and Proposition 3.7).

Corollary 3.9 (Soundness of Hb). For any wff A, if `Hb A, then �Hb A.

Proof. Immediate by Corollary 3.8, since an Hb-model is an EHb-model.

In what follows, we proceed to prove the soundness of the EHb-logics (recall that by
an EHb-logic we mean an extension of Hb with some subset of the theses in Definition
2.12, provable in either G3 or S5G3). The basic notion is “corresponding postulate” (cf.
Routley et al., 1982, Chapter 4). We give a corresponding semantical postulate to each
one of the items a1 through a50. Then, given Corollary 3.8, a class of EHb-modelsM,
and any M ∈M, we only need to prove that ak (1 ≤ k ≤ 50) is true in M (or preserves
truth in M, as the case may be) provided its corresponding semantic postulate pak
holds in M.

Let now L be any EHb-logic. The section is ended by the definition of L-models
and the proof of (weak) soundness of L w.r.t. L-models. L-models are simply defined
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by adding to Hb-models the corresponding postulates to the items in Definition 2.12
added to build L from Hb. Then, soundness of L is immediate from Corollary 3.8 (all
theorems of Hb are EHb-valid) and Lemma 3.11 (EHb-validity of pa1-pa50).

Definition 3.10 (Postulates corresponding to a1-a50). Below, we provide postulates
corresponding to each one of a1-a50.

pa1. Rabc⇒ ∃x(Rabx & Raxc)

pa2. R2abcd⇒ ∃x(Rbcx & Raxd)

pa3. R2abcd⇒ ∃x(Racx & Rbxd)

pa4. Raaa

pa5. Rabc⇒ R2abbc

pa6. Rabc⇒ R2baac

pa7. R2abcd⇒ ∃x, y(Racx & Rbcy & Rxyd)

pa8. R2abcd⇒ ∃x, y(Racx & Rbcy & Ryxd)

pa9. Rabc⇒ R2abbc

pa10. ∃x ∈ Z Raxa [Za iff for all b, c ∈ K,Rabc⇒ ∃x ∈ O Rxbc]

pa11. ∃x ∈ O Raxa

pa12. R2abcd⇒ R2bacd

pa13. R3abcde⇒ R3acbde

pa14. Rabc⇒ Rbac

pa15. R2abcd⇒ R2acbd

pa16. Rabc⇒ R2baac

pa17. Rabc⇒ ∃x(Rabx & Rbxc)

pa18. Rabc⇒ ∃x(Rbax & Raxc)

pa19. R2abcd⇒ R2bcad

pa20. Rabc⇒ (a ≤ c or b ≤ c)

pa21. Rabc⇒ (a ≤ c or b ≤ c)

pa22. (Rabc & Rade & a ∈ O)⇒ (b ≤ e or d ≤ c)

pa23. (Rabc & Rade)⇒ ∃x[(Rabx or Radx) & x ≤ c & x ≤ e]

pa24. (Rabc & Rade)⇒ ∃x[(Raxc or Raxe) & b ≤ x & d ≤ x]

pa25. Rabc⇒ b ≤ c

pa26. R2abcd⇒ Racd

pa27. Rabc⇒ a ≤ c

pa28. R2abcd⇒ a ≤ d

pa29. Rabc⇒ (Rbac & a ≤ c)

pa30. Rabc⇒ (a ≤ c & b ≤ c)

pa31. R2abcd⇒ ∃x(Raxd & b ≤ x & c ≤ x)

pa32. (Rabc & a ∈ O)⇒ b ≤ a

pa32′. (Rabc & Rade & a ∈ O)⇒ Rdbc
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pa33. Raa∗a∗

pa34. Ra∗aa∗

pa35. Raa∗a∗∗

pa36. Rabc⇒ Rac∗b∗

pa37. Rabc⇒ a ≤ b∗

pa38. Rabc⇒ b ≤ a∗

pa39. Ra∗a∗a∗

pa40. (Rabc & a ∈ O)⇒ (b ≤ a or a ≤ c∗)

pa41. Rabc⇒ (b ≤ a∗ or a ≤ c)

pa42. Ra∗bc⇒ (b ≤ a or a∗ ≤ c)

pa43. Ra∗bc⇒ (b ≤ a∗ or a ≤ c)

pa44. Rabc⇒ c∗ ≤ a∗

pa45. (Rabc & Ra∗de)⇒ (d ≤ c or b ≤ e)

pa46. Ra∗bc⇒ a∗ ≤ c

pa47. Rabc⇒ (a ≤ b∗ or a ≤ c)

pa48. Rabc⇒ (a ≤ b∗ or c∗ ≤ a∗)

pa49. Ra∗aa

pa50. a ∈ O ⇒ a∗ ≤ a

Lemma 3.11 (EHb-validity of a1-a50). LetM be a class of EHb-models and M ∈M.
Then, for any k (1 ≤ k ≤ 10; or 12 ≤ k ≤ 50) ak is true in M if pak holds in M; and
a11 preserves truth in M if pa11 holds in M.

Proof. The proof of the validity of a1-a32, a32′ (that a11 preserves truth in M, in the
case of a11) can be found in Robles & Méndez (2018). The proof of a33-50 is similar to
that given in Routley et al. (1982, Chapter 4), for extensions of Routley and Meyer’s
basic logic B. Let us prove some cases:

(a) a34, (A∧¬B)→ ¬(A→ B), is true in M : For reductio, suppose that there are
wffs A,B and a ∈ K in M such that (1) a � A ∧ ¬B but (2) a 2 ¬(A→ B). By 1, we
have (3) a � A and (4) a∗ 2 B; and by 2, (5) a∗ � A → B. Then, we apply pa34 (6)
Ra∗aa∗, and we conclude (7) a∗ � B by 3, 5 and 6, contradicting 4.

(b) a38, ¬A → (A → B), is true in M : For reductio, suppose that there are wffs
A,B and a ∈ K in M such that (1) a � ¬A but (2) a 2 A → B. By 1, we get (3)
a∗ 2 A, and by 2, there are b, c ∈ K in M such that (4) Rabc, (5) b � A and (6) c 2 B.
By pa38 and 4, we get (7) b ≤ a∗, whence by 5, we obtain (8) a∗ � A, contradicting 3.

(c) a40, (A∨¬B)∨ (A→ B), is true in M : for reductio suppose that there are wffs
A,B and a ∈ O such that (1) a 2 A, (2) a 2 ¬B (i.e, a∗ � B) and (3) a 2 A → B.
By 3, there are b, c ∈ K such that (4) Rabc, (5) b � A and (6) c 2 B. By pa40 and 4
(given that a ∈ O), we have (7) b ≤ a or (8) a∗ ≤ c. But 5 and 7 contradict 1, whereas
2 and 8 contradict 6.

(d) a45, ¬(A→ B)→ (B → A), is true in M : For reductio, suppose that there are
wffs A,B and a ∈ K in M such that (1) a � ¬(A → B), i.e., (2) a∗ 2 A → B, but
(3) a 2 B → A. By 2, there are b, c ∈ K in M such that (4) Ra∗bc, (5) b � A and (6)
c 2 B. By 3, there are d, e ∈ K in M such that (7) Rade, (8) d � B and (9) e 2 A. But
by pa45, we have either (10) d ≤ c or (11) b ≤ e. Then, 8 and 10 contradict 6; and 5
and 11 contradict 9.
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Definition 3.12 (L-models). Let L be an EHb-logic. An L-model is defined when
adding to Hb-models the semantical postulates corresponding to the items in Defi-
nition 2.12 added to Hb for axiomatizing L. For example, consider the extension of
Hb axiomatized by a7 and a26 Then, an EHb-model for this system is a structure
(O,K,R, ∗,�) where O, K, R, ∗, and � are defined exactly as in Definition 3.1, save
for the addition of the postulates pa7 and pa26. (The notion of L-validity is defined
according to the general Definition 3.3. Notice that the system just defined is the ex-
pansion of the positive fragment of Lewis’ logic S4 (cf. Hacking, 1963) with the basic
quasi-Boolean H-negation defined above).

Theorem 3.13 (Soundness of EHb-logics). Let L be an EHb-logic. For any wff A, if
`L A, then �L A.

Proof. By Corollary 3.8 and Lemma 3.11, given Definition 3.12.

The section is ended with the following remark (cf. Remark 2.13).

Remark 3.14 (Bb-models). We note that Bb-models, RM-models for B-negation,
are defined by adding the postulate a∗ ≤ a to Hb-models. Bb-models characterize Hb
plus the axioms C → [B → (A ∨ ¬A)] (A9′) and C → [¬(A ∨ ¬A)→ B] (A10′).

4. Completeness. Preliminary notions and lemmas

We use a canonical model construction in order to prove the completeness of the EHb-
logics. The canonical model is defined and then we prove that if A is not a theorem
of the logic in question, then A is false in at least a designated point in the canonical
model. Firstly, we define some preliminary notions needed to define the canonical
model.

Definition 4.1 (EHb-theories). Let L be an EHb-logic. An L-theory is a set of wffs
closed under Adjunction (Adj) and L-entailment (L-ent). That is, a is an L-theory if
whenever A,B ∈ a, then A ∧ B ∈ a; and if whenever A → B is a theorem of L and
A ∈ a, then B ∈ a.

By the term EHb-theory, we will generally refer to any theory defined upon an EHb-
logic as just indicated. The classes of EHb-theories of interest in the present paper are
remarked in the following definition.

Definition 4.2 (Classes of EHb-theories). Let L be an EHb-logic and a an L-theory.
We set: (1) a is prime iff whenever A ∨B ∈ a, then A ∈ a or B ∈ a. (2) a is empty iff
it contains no wffs. (3) a is regular iff a contains all theorems of L. (4) a is trivial iff
every wff belongs to it. (5) a is a-consistent (consistent in an absolute sense) iff a is
not trivial.

Next, we prove two useful propositions.

Proposition 4.3 (On non-empty EHb-theories). Let L be an EHb-logic and a a non-
empty L-theory. Then, ¬(A ∧ ¬A) ∈ a for any wff A.

Proof. Immediate by A9.

Proposition 4.4 (a is a-inconsistent iff A ∧ ¬A ∈ a). Let L be an EHb-logic and a
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an L-theory. Then, a is a-inconsistent iff A ∧ ¬A ∈ a for some wff A.

Proof. Immediate by T3 (ECQ).

Notice then that, within the context of Hb and its extensions, a-consistency and
(negation) consistency in the customary sense of the term coincide.

Next, canonical models are defined.

Definition 4.5 (Canonical EHb-models). Let L be an EHb-logic and KT be the set
of all L-theories. Then, the ternary relation RT is defined in KT as follows: for any
a, b, c ∈ KT , RTabc iff for any wffs A,B, (A → B ∈ a & A ∈ b) ⇒ B ∈ c. Next, let
KC be the set of all prime, non-empty and a-consistent L-theories, OC be the subset
of KC formed by all regular L-theories and RC be the restriction of RT to KC . On the
other hand, let ∗Cbe defined on KC as follows: for all a ∈ KC , a∗

C

= {A | ¬A /∈ a}.
Finally, the relation �C is defined as follows: for each formula A and a ∈ KC , a �C A
iff A ∈ a. Then, the structure (OC ,KC , RC , ∗C ,�C) is the canonical L-model.

As pointed out above, completeness leans upon proving that the canonical L-model
is indeed an L-model. Now, the proof of this fact is similar to the corresponding
proofs in standard relevant logics (cf. Routley et al., 1982, Chapter 4), except for an
important difference: everytime an L-theory a is built, a has to be proven non-empty
and a-consistent. But this is easily shown by using Propositions 4.3 and 4.4.

In the sequel, a series of preliminary lemmas follows. We suppose we are given an
EHb-logic L: some of the lemmas below are not provable for weaker logics.

Lemma 4.6 (On the relation RT ). Let a, b be non-empty L-theories and c be an
a-consistent and prime L-theory. Then,

(a) The set x = {B | ∃A(A→ B ∈ a & A ∈ b)} is a non-empty L-theory such that
RTabx.

(b) If RTabc, then there is a prime and a-consistent (and non-empty) prime L-theory
x such that a ⊆ x and RTxbc.

(c) If RTabc, then there is a prime and a-consistent (and non-empty) prime L-theory
x such that b ⊆ x and RTaxc.

Proof. (a) It is easy to prove that x is an L-theory such that RTabx. Then, the non-
emptiness of x follows by A9 (notice that the simpler thesis B → ¬(A ∧ ¬A) is not
sufficient).

(b) A prime L-theory a such that a ⊆ x and RTxbc is built up similarly as in stan-
dard relevant logics. Next, x is immediately shown a-consistent. If x is a-inconsistent,
then A → B ∈ x, for A ∈ b and arbitrary wff B, whence c would be a-inconsistent,
contradicting one of the hypotheses.

(c) As in the precedent case, a prime L-theory x such that b ⊆ x and RTaxc is built
up similarly as in relevant logics. Then, the a-consistency of x is proven as follows.
Suppose x is a-inconsistent. Let A ∈ a and B be an arbitrary wff. Then, C ∧ ¬C ∈ x
for some wff C, by Proposition 4.4. By A10, A → [(C ∧ ¬C) → B] is an L-theorem.
So, (C ∧¬C)→ B ∈ a, whence B ∈ c, by RTaxc, contradicting the a-consistency of c
(notice that the ECQ axiom is not sufficient).

Lemma 4.7 (∗C is an operation on KC). Let a be a prime, non-empty and a-
consistent L-theory. Then, a∗

C

is a prime, non-empty and a-consistent L-theory as
well.
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Proof. As there is no danger of confusion between a∗ in K and the canonical L-theory
a∗

C

in KC , we omit the supersript C above ∗ in this proof and the proofs to follow.
Now, a∗ is proven a prime L-theory similarly as in standard relevant logics. Then a∗

is shown non-empty and a-consistent as follows. (1) a∗ is non-empty. Let A ∈ a. If a∗

is empty, then A /∈ a∗, whence A ∧ ¬A ∈ a, contradicting the a-consistency of a. (2)
a∗ is a-consistent. If a∗ is a-inconsistent, then A ∧ ¬A ∈ a∗ for some wff A, whence
¬(A ∧ ¬A) /∈ a, contradicting the non-emptiness of a (cf. Proposition 4.3).

Lemma 4.8 (a ≤C b iff a ⊆ b). For any a, b ∈ KC , a ≤C b iff a ⊆ b. (By d1, a ≤C b
is equivalent to RCxab, for some x ∈ OC .)

Proof. It is proved similarly as in standard relevant logics, except that in addition
to being regular, x has to be proven a-consistent, which is immediate by Lemma
4.6(b).

Finally, we prove the primeness lemma and then the adequacy of the canonical
valuation relation.

Lemma 4.9 (Extension to prime L-theories). Let a be an L-theory and A a wff such
that A /∈ a. Then, there is a prime L-theory x such that a ⊆ x and A /∈ x.

Proof. By direct application of Kuratowski-Zorn’s Lemma as in Routley et al. (1982,
Chapter 4, pp. 310-311).

Lemma 4.10 (�C and clauses (i)-(v)). For any a, b, c ∈ KC and wffs A,B: (i) (a ≤C

b & a �C p) ⇒ b �C p; (ii) a �C A ∧ B iff a �C A and a �C B; (iii) a �C A ∨ B iff
a �C A or a �C B; (iv) a �C A→ B iff for all b, c ∈ KC , (RCabc & b �C A)⇒ c �C

B; (v) a �C ¬A iff a∗
C 2C A.

Proof. Similar to those in relevant logics, save that Lemma 4.6 (cases a and c) is used
to prove non-emptiness and a-consistency when required.

Notice that Lemma 4.6 (cases a and c) and Lemma 4.10 require A9 and A10 in
order to be proven.

5. Completeness of the EHb-logics

By using the primeness lemma (Lemma 4.9), it is easy to prove that if A is not an
L-theorem, then there is some prime, regular and a-consistent L-theory not containing
A. Then, for proving the completeness of L, it only remains to show that the canonical
L-model is in fact a model. Now, given Lemma 4.7 (∗C is an operation on KC) and
Lemma 4.10 (Adequacy of the canonical evaluation clauses), it only remains to prove
(1) the set OC is non-empty; and (2) the postulates hold canonically.

Corollary 5.1 (OC is not empty). Let (OC ,KC , RC , ∗C ,�C) be the canonical L-
model. Then, the set OC is not empty.

Proof. Clearly, L is a-consistent since all axioms and rules of L are theorems and
rules of classical propositional logic when read with the classical connectives. Then,
Corollary 5.1 is immediate by Lemma 4.9.

14



Lemma 5.2 (The postulates are canonically valid). Let L be an EHb-logic. Then, (1)
P1, P2a, P2b, P2c, P2d, P3 and P4 hold in all canonical EHb-models. (2) pak holds
in the canonical L-model if ak is provable in L (1 ≤ k ≤ 50).

Proof. The proof is similar to that provided in Routley et al. (1982, Chapter 4), for
extensions of Routley and Meyer’s basic logic B. Actually, a proof for P1, P2a, P2b,
P2c, P2d and P3 can be found in the aforementioned chapter and P4 is proved below.
Then, pak holds in the canonical L-model if ak is provable in L (1 ≤ k ≤ 50). Now,
concerning pa1-pa32 and pa32′, the proof can be found in Robles & Méndez (2018).
And concerning pa33-pa50, we prove the canonical validity of the postulates used in
Lemma 3.11, as a way of an example.

(a) P4, a ≤ a∗, is provable in the canonical L-model : Suppose a ∈ KC and (1)
A ∈ a. We have to prove A ∈ a∗. Suppose (2) A /∈ a∗. Then, (3) ¬A ∈ a whence by 1,
we get (4) A ∧ ¬A, contradicting the a-consistency of a (cf. Proposition 4.4).

(b) pa34, Ra∗aa∗, is provable in the canonical L-model: Let a ∈ KC and suppose (1)
A→ B ∈ a∗ and (2) A ∈ a. We have to prove B ∈ a∗. By 1, we get (3) ¬(A→ B) /∈ a,
whence, by a34, (A ∧ ¬B) → ¬(A → B), we have (4) A ∧ ¬B /∈ a, i.e., (5) A /∈ a or
¬B /∈ a. Then, (6) ¬B /∈ a follows by 2 and, finally, (7) B ∈ a∗ by 6, as was to be
proved.

(c) pa38, Rabc⇒ b ≤ a∗ is provable in the canonical L-model : Let a, b, c ∈ KC and
suppose (1) RCabc and (2) A ∈ b. We have to prove A ∈ a∗. Let B an arbitrary wff
and for reductio suppose (3) A /∈ a∗, i.e., ¬A ∈ a. By a38 we have (4) ¬A→ (A→ B),
whence by 3, we get (5) A→ B ∈ a and, finally, by 1, 2 and 5, (6) B ∈ c, contradicting
the a-consistency of c.

(d) pa40, (Rabc & a ∈ O) ⇒ (b ≤ a or a∗ ≤ c), is provable in the canonical
L-model: Let a ∈ OC , b, c ∈ KC and suppose (1) RCabc and, for reductio, (2) A ∈ b,
(3) A /∈ a, (4) B ∈ a∗, i.e., ¬B /∈ a and (5) B /∈ c. By a40, we have (6) (A∨¬B)∨(A→
B) ∈ a, given that a ∈ OC . Then, by 3, 4 and 6, we get (7) A→ B ∈ a, whence by 1
and 2, (8) B ∈ c is obtained, contradicting 5.

(e) pa45, (Ra∗bc & Rade) ⇒ (d ≤ c or b ≤ e), is provable in the canonical
L-model: Let a, b, c ∈ KC and suppose (1) RCa∗bc, (2) Rade and, for reductio, (3)
A ∈ d, (4) A /∈ c, (5) B ∈ b and (6) B /∈ e. By 1, 4 and 5, we have (7) B → A /∈ a∗,
i.e., (8) ¬(B → A) ∈ a. By a45, (9) ¬(B → A) → (A → B) is an L-theorem. Then,
we get (10) A → B ∈ a, by 8 and 9. Finally, by 2, 3 and 10, (11) B ∈ e is derivable,
contradicting 6.

Proposition 5.3 (The canonical model is a model). Let L be an EHb-logic. The
canonical L-model is indeed an L-model.

Proof. Given Definition 4.5 and Corollary 5.1, the proof follows by Lemma 4.7 (∗C is
a operation on KC), Lemma 4.10 (Adequacy of the canonical clauses) and Lemma 5.2
(The postulates hold canonically).

Theorem 5.4 (Completeness of the EHb-logics). Let L be an EHb-logic. For any wff
A, if �L A, then `L A.

Proof. We prove the contrapositive of the claim. Suppose A is a formula such that
0L A and let L be the set of all its theorems. Then, A /∈ L, and by Lemma 4.9, there is
a prime and regular (and a-consistent) L-theory x such that L ⊆ x and A /∈ x. Then,
the canonical model is defined and x is a member of OC in the canonical L-model
such that x 2C A. Given that the canonical L-model is an L-model, we have 2L A by
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Definition 3.3.

6. A note on reduced Routley-Meyer semantics and strong completeness

As pointed out in the introduction of this paper, there are two types of RM-semantics,
RM0-semantics and RM1-semantics. The latter can be reduced or unreduced RM1-
semantics. In Brady (2003) and Routley et al. (1982), it is explained at length why
reduced RM1-semantics is preferable when it is possible to define it.

Well then, a necessary condition for defining a reduced RM1-semantics for a given
logic L is that it is possible to build up prime regular theories closed under the primitive
rules of inference of L. But this necessary condition is not generally met by weak logics.
Let us elaborate on the question. Consider the logics C, C′ defined below (cf. Routley
et al., 1982, p. 289 —the logic C′ is defined by us).

Definition 6.1 (The logic C). The logic C is axiomatized by adding to B (cf. Propo-
sition 2.8) the following axioms: a3 (Axiom Suffixing), a4 (Axiom Modus Ponens) and
a36 (Axiom Contraposition) (cf. Definition 2.12; we note that a2 (Axiom Prefixing) is
derivable in C by a3, a36 and the Double Negation Axioms).

Definition 6.2 (The logic C′). The logic C′, a sublogic of C, is axiomatized by adding
to BM the axioms a2, a3, a4 and a36.

In Routley et al. (1982, Chapter 4), it is essentially shown that C and any of its
extensions with Adj and MP as the sole primitive rules of inference can be given a
reduced RM1-semantics. Although we cannot prove it here, it could be shown that this
result still holds for the weaker logic C′ and its extensions with only Adj and MP as
primitive rules of inference. Consequently, all extensions of Hb included in G3 and/or
S5G3 with a2, a3, a4, a36 and Adj and MP as the only primitive rules of inference could
be endowed with a reduced RM1-semantics instead of the unreduced one provided for
them in the present paper. Moreover, even logics weaker than C′ can be given a reduced
RM1-semantics on the condition that each one of their primitive rules of inference
(except Adj) be accompanied by its disjunctive version or the corresponding “thesis
form” (cf. Routley et al., 1982, pp. 356, ff.; for example, the disjunctive version of the
rule Suf is D∨ (A→ B)⇒ D∨ [(B → C)→ (A→ C)], while the corresponding thesis
form is, of course, a3). Consequently, any extension L of Hb included in G3 and/or
S5G3 with any (or all) the rules MP, Suf, Pref, Con and a11 as primitive rules of
inference can be given a reduced RM1-semantics with the proviso that the disjunctive
version or the thesis form of the rules present be added.

Related in a way, that we cannot pause here to explain with some detail, to the
possibility of defining a reduced RM1-semantics for a given logic L is that of proving
a standard strong completeness theorem for L. In general, if L is a logic with other
primitive rules of inference than Adj and MP and lacking the disjunctive versions or
the thesis forms of the primitive rules in question, then strong completeness (of sorts)
can only be proven w.r.t. a deductive consequence relation `L defined as follows: for
any set of wffs Γ and wff A, Γ `L A iff there is a finite sequence of wffs B1, ...Bm

such that for each Bi (1 ≤ i ≤ m), we have (1) Bi ∈ Γ; (2) Bi is a theorem of L;
(3) Bi is the result of applying the rule Adj; (4) Bi is the result of applying the rule
L-entailment (L-ent) to two precedent wffs in the sequence (L-ent is the following rule:
`L A → B & A ⇒ B). Nevertheless, a standard strong completeness theorem is
provable for L provided the disjunctive versions or the thesis forms of the primitive
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rules of inference of L are added to its axiomatization.

7. Concluding remarks

It was pointed out in Proposition 2.9 and in §4 that axiomatization of H-negation
(as this notion has been understood in the present paper) requires A9 and A10 in
general, since the ECQ axiom, (A ∧ ¬A) → B, is insufficient in the case of certain
logics. Nevertheless, the ECQ axiom could be sufficient in logics built on expansions of
the language upon which Hb and its extensions have been defined here. In particular,
if fusion (◦) and the ‘left implication’ (←) of the Lambeck calculus (cf. e.g., Restall,
2000a) are added as new connectives, then A9 and A10 can be derived from BM plus
the ECQ axiom (we owe this remark to an anonymous referee of the JANCL). Maybe
this fact would also obtain in the case of addition of other connectives, such as those
investigated in Bimbó & Dunn (2008). Thus, future work on the topic could consist in
the restructuration of the systems investigated above now based on a new definition
of Hb built upon the expanded language with ◦ and←, and/or with other connectives
as well.

In the present paper, we have defined a family of logics including Sylvan and Plum-
wood’s logic BM extended with an intuitionistic negation of sorts, essentially axiom-
atized by A9 and A10. Of course, there is an immense literature on the two topics
central to the investigation here reported, intuitionistic logics and the notion of nega-
tion (cf., e.g., Moschovakis, 2018 and Horn & Wansing, 2020, and references in these
two items), but we think that the perspective we have adopted is still new. Let us
briefly comment on work related to the one recorded in the preceding pages. Gener-
ally speaking, the literature can be divided in two types of investigations: (a) negation
expansions of systems built upon a minimal consequence relation and without using
the conditional connective. For instance, one of the aforesaid minimal systems can be
found in Dunn (2000). It has the rule A ∧ ¬A ` B, or alternatively, B ` A ∨ ¬A. Or
to take another example, in Shramko (2005), the rules assumed are A ∧ ¬A ` B and
A ` ¬¬A, or alternatively, B ` A∨¬A and ¬¬A ` A (cf. also Restall, 2000b; Restall,
1999; and Dunn, 1993); (b) negation expansions built upon positive systems with a
strong conditional. For instance, the positive fragments of relevant logic, intuitionistic
logic and both Gödelian 3-valued logic G3 and Lewis’ S5 are the starting point in
Dunn (2000), Wansing (2016) and Yang (2012), respectively. In this sense, we think
that the point of view we have adopted in the present paper is not only new within the
semantics used (RM-semantics), but also in what concerns the family of logics studied
with the said semantics.
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Appendix A. Appendix

Proposition A.1 (Ant, DNE are deriv. in FDE+ plus ECQ & CPEM). The axiom
DNE, ¬¬A→ A, and the rule Ant, (A ∧B)→ ¬C ⇒ (A ∧C)→ ¬B are derivable in
FDE+ plus the axioms ECQ, (A ∧ ¬A)→ B, and CPEM, B → (A ∨ ¬A).

Proof. (Sketch)
(a) (A ∧B)→ ¬C ⇒ (A ∧ C)→ ¬B:
Suppose (1) (A ∧ B) → ¬C (Hyp) and (2) (C ∧ ¬C) → ¬B (ECQ). By 1, 2 and

FDE+, we have (3) [(A ∧ C) ∧ B] → ¬B. On the other hand, we obviously have (4)
[(A ∧ C) ∧ ¬B] → ¬B. By 3, 4 and FDE+, we get (5) [(A ∧ C) ∧ (B ∨ ¬B)] → ¬B.
Now, we use (6) C → (B ∨¬B) (CPEM), whence we obtain (7) [(A∧C)∧ (A∧C)]→
[(A ∧ C) ∧ (B ∨ ¬B)]. Finally, by 5, 7 and FDE+, we get (8) (A ∧ C) → ¬B, as was
to be proved.

(b) ¬¬A→ A:
We have (1) ¬¬A → (A ∨ ¬A) (CPEM). By 1 and FDE+, we have (2) (¬¬A ∧

¬¬A) → [(¬¬A ∧ A) ∨ (¬¬A ∧ ¬A]. We use now (3) (¬¬A ∧ ¬A) → A (ECQ). By 3
and FDE+, we get (4) [(¬¬A ∧ A) ∨ (¬¬A ∧ ¬A)] → A. Finally, by 2, 4 and FDE+,
we have (5) ¬¬A→ A, as was to be proved.

Consider the following definitions.

Definition A.2 (The matrix MG3). The matrix MG3 is the structure (V, D,F) where
(1) V = {0, 1, 2} and 0 < 1 < 2; (2) D = {2} and F = {f→, f∧, f∨, f¬} where f→, f∨, f¬
are defined according to the following truth-tables:

→ 0 1 2
0 2 2 2
1 0 2 2
2 0 1 2

∧ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

∨ 0 1 2
0 0 1 2
1 1 1 2
2 2 2 2

¬
0 2
1 0
2 0

Definition A.3 (The matrix MS5G3). The matrix MS5G3 is the structure (V, D,F)
where V, D and F are defined similarly as in MG3, except that now D = {1, 2} and
f→ is defined according to the following truth-table:

→ 0 1 2
0 2 2 2
1 0 2 2
2 0 0 2

Notice that CPEM and DNI are falsified by both MG3 and MS5G3.

Definition A.4 (Axiomatization of G3 and S5G3). Positive intuitionistic logic, H+,
can be axiomatized by adding a7 and a27 to B+ (cf. Definitions 2.4 and 2.12); on the
other hand, positive modal logic S5 can be axiomatized by adding a7, a26 and a32′ to
B+ (cf. Hacking, 1963). Then, G3 is axiomatized as follows: H+ plus DNI, a36, a38 and
a40 (cf. Robles, 2014, and references therein). Concerning the logic S5G3, that is, the
logic determined by MS5G3, we have not axiomatized it and we ignore if it has been
axiomatized somewhere in the literature. However, we remark that two logics related
to it, the logics determined by the matrices resulting of changing the truth-table for
negation in MS5G3 for the ones below have been axiomatized in Robles & Méndez
(2019) and Yang (2012), respectively.
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¬
0 2
1 1
2 0

¬
0 2
1 2
2 0
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