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Abstract

Łukasiewicz presented two different analyses of modal notions by means

of many-valued logics: (1) the linearly ordered systems Ł3,..., Ł,..., L;

(2) the 4-valued logic Ł he defined in the last years of his career. Unfortu-

nately, all these systems contain “Łukasiewicz type (modal) paradoxes”.

On the other hand, Brady’s 4-valued logic BN4 is the basic 4-valued bilat-

tice logic. The aim of this paper is to show that BN4 can be strengthened

with modal operators following Łukasiewicz’s strategy for defining truth-

functional modal logics. The systems we define lack “Łukasiewicz type

paradoxes”. Following Brady, we endow them with Belnap-Dunn type

bivalent semantics.
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1 Introduction

The aim of this paper is to investigate two modal strengthenings of Brady’s

paraconsistent 4-valued logic BN4 (cf. [8]). In order to define these modal

strengthenings of BN4, we will follow Łukasiewicz’s approach to modal many-

valued logics (cf. [18], [19], [20]). As Minari remarks (cf. [24]), the original

motivation and the philosophical significance of Łukasiewicz’s many-valued sys-

tems lie in “two strictly intertwined issues”: (1) the rejection of deterministic

philosophy; (2) “the aim to provide an adequate logical foundation to modal

propositions, and more generally, to the very notions of possibility and neces-

sity” (cf. [24], p. 1). Thus, for example, Łukasiewicz points out the following

about the 3-valued logic Ł3, the first one of the many-valued logics he defined:

“The indeterministic philosophy [...] is the metaphysical substratum of the new

logic” ([17], p. 88). “The third logical value may be interpreted as “possibility””

([17, p. 87).

Łukasiewicz presented two different analyses of modal notions by means of

many-valued logics: (a) the linearly ordered systems Ł3,..., Ł,..., Ł he defined

since 1920 (cf. [20]); (b) the 4-valued modal logic Ł he defined in the last years
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of his career (cf. [18], [19]). In the family Ł3,..., Ł,..., Ł the modal operators 

(necessity) and  (possibility) can be defined as follows:  =df ¬(→ ¬),
 =df ¬ →  (these definitions were suggested by Tarski when he was

Łukasiewicz’s student; the symbols  and  are Łukasiewicz’s –cf. [12], notes

2 and 3; cf. Definition 2.1 on the languages used in this paper). On the other

hand,  and  are defined in Ł independently of the rest of the connectives of

the system (cf. [18], [19], [12]).

Unfortunately, both the systems of the sequence Ł3,...,Ł,...,Ł and the

logic Ł validate such theses as the following (cf. Proposition 3.26 below): (f7)

(∨)→ (∨) and (f8) (∧)→(∧), which are in prin-
ciple difficult to accept from an intuitive point of view. Moreover, in addition

to f7 and f8, the following are provable in Ł: (f5) ( → ) → ( → );
(f6) (→ )→ (→ ); (f9) → ( → ); (f10) → ( → ).
Theses f9 and f10 are especially counterintuitive, fact that leads the authors of

[12] to conclude that Ł is a “dead end” as a modal logic of necessity and possi-

bility (the reader can find an analysis of Ł explaining why these counterintuitive

consequences arise in the system in [22]). Thus, it must be concluded that nei-

ther the family Ł3,...,Ł,...,Ł nor Ł can be taken as a many-valued analysis

of the notions of necessity and possibility when understood in their customary

sense. However, the aim of this paper is to show that both strategies followed by

Łukasiewicz ((a) and (b) referred to above) work when modally strengthening

Brady’s BN4. We mean “work” in the following sense: (1) Łukasiewicz’s type

paradoxes such as f5-f10 remarked above are falsified in both strengthenings;

(2) both modal strengthenings of BN4 are strong, genuine 4-valued modal log-

ics (cf. Propositions 3.25, 3.26 below). In order to explain the strengthenings

we propose appropriately, we begin by discussing some of the main features of

Brady’s BN4.

The logic BN4 was defined by Brady in [8]. The matrix MBN4 (cf. Definition

2.7 below) upon which BN4 is built is, according to Brady ([8], p. 10), a

modification of Smiley’s matrix MSm4 (cf. Definition A3 in the Appendix),

characteristic of Anderson and Belnap’s First Degree Entailment Logic, FDE

(cf. [1], pp. 161-162). According to Dunn ([11], p. 8), the matrix MSm4 is

in its turn a simplification of Anderson and Belnap’s 8-element matrix M0 (cf.

[4]), which has played an important role on the development of relevant logics

(cf. [27], pp. 176, ff.; M0 is defined in the Appendix –Definition A4).

The logic BN4 can be considered as an implicative expansion of Belnap and

Dunn’s well known logic B4, which is equivalent to Anderson and Belnap’s logic

FDE mentioned above (cf. [5], [6], [10], [11] and the references in this last item).

That is, BN4 is a strengthening of B4 by introducing→ as a new connective (cf.

Definition 2.5 on the matrix MB4 upon which the logic B4 is defined). In fact,

it is easy to show (cf. Section 5 of the Appendix) that the “strong implication”

(→) of the bilattice logic GBL⊃ (cf. [2], [3]) is actually the conditional of

BN4. Now, given that “strong implication” (→) and “weak implication” (⊃)
are interderdefinable in the context of the {∧∨¬} fragment of GBL⊃ (cf. [2],
§3.4), the basic logic GBL⊃, i.e., the {→∧∨¬} fragment of GBL⊃, is actually
the logic BN4 defined by Brady. Therefore BN4 is undoubtedly a central non-
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classical logic.

According to Meyer et al., BN4 “is the correct logic for the 4-valued situation,

where the extra values are to be interpreted in the both and neither senses” ([23],

p. 253). On the other hand, Slaney considers this logic as the truth-functional

implication most naturally associated with FDE, i.e., with B4 (cf. [29], p. 289).

The label BN4 is explained by Brady as follows ([8], p. 32, Note 1): “This

name is chosen because the system contains the basic system B of [5], Chapter

4, and has a characteristic 4-valued matrix set, one of the values being ‘n’,

representing neither truth nor falsity” ([5] is the monograph [27] in the references

in the present paper). However, it is tempting to read BN4 as (oth) and

(either) 4-valued logic. That is, as the logic interpreted by the truth values

 (ruth) and  (alsity),  (neither  nor  ) and  (both  and  ), which is

precisely as Belnap intuitively interpreted the elements of the 4-element matrix

MB4 (cf. [4], [5]).

Two modal strengthenings of BN4 are investigated in the present paper.

1. The logic EBN4, a definitional extension of BN4 defined by introducing

 and  in BN4 according to the tarskian definitions ¬( → ¬) and
¬→ , respectively.

2. The logic MBN4, a modal expansion of BN4, defined by introducing 

and  according to the following truth tables:

   

    

   

    

According to these tables,  is true iff  is true; otherwise  is false;

and  is false if  is false; otherwise  is true. We remark that these

tables are not definable from the rest of the connectives of BN4 (cf. Proposition

2.9 below). These tables are investigated in the algebraic study [13] briefly

commented below, and are one of the sets suggested in [7].

There are other modal expansions of B4 (and of its expansions) in the liter-

ature. Let us briefly comment on some of them and explain in which sense our

proposal is an original one.

Priest [26] is a modal expansion of the logic FDE by using Kripke models.

Odintsov and Wansing [25] investigate modal implicative expansions of BN4.

The basic logics contain classical positive logic with strong negation. Jung and

Rivieccio [16] study a modal expansion of Arieli and Avron’s bilattice logic

(in its full language), which has been mentioned above (they expand the full

logic GBL⊃ in the language {∧∨⊗⊕⊃¬  >⊥}). Font and Rius [13]
is an algebraic investigation of two expansions of B4 based on two different

consequence relations defined on the modal expansion of the matrix MB4 (cf.

Definition 2.5 below on this matrix). Finally, Goble [14] investigates normal

modal expansions of BN4 and RM3. (RM3 is the strongest extension of R-

Mingle; cf. [1] and [8].)

As suggested above, our approach is “Łukasiewiczian” in character and, as

such, is fairly different from those adopted in the investigations just briefly com-

mented. Thus, unlike [14], [16], [25] and [26], we shall dispense with “possible
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worlds” for interpreting the modal operators; and unlike [13], which investigates

modal expansions of MB4, ours is a study of a modal implicative expansion of

the same matrix.

The structure of the paper is as follows. In Section 2, the 4-valued logics

BN4 and MBN4 are defined, Belnap-Dunn type semantics are provided for

each one of them and the soundness theorems are proved. In Section 3, we

prove completeness of BN4 and MBN4 both w.r.t. their matrices MBN4 and

MMBN4, on the one hand, and their respective Belnap-Dunn type semantics,

on the other. In addition, some properties ofMBN4 are briefly discussed (for

example, that MBN4 is a conservative extension of BN4). In the first part

of Section 4, the (modal) definitional extension of BN4, EBN4, is investigated.

Then, in the second part, it is shown how to introduce the modal operators of

EBN4 in other logics similar to BN4 independently of the tarskian definitions.

The paper ends in Section 5 with some considerations on the results obtained

and on further work on the same topic to be developed in other research papers.

We have added an appendix on some technical matters mentioned throughout

the paper.

2 Brady’s 4-valued logic BN4 and its modal ex-

pansionMBN4

This section is subdivided into three subsections. In the first one, we set some

preliminary definitions; in the second one, the modal expansion of Brady’s 4-

valued logic BN4, MBN4, is defined; finally, in the third subsection, Belnap-

Dunn type semantics for the logicMBN4 is provided.

2.1 Preliminary definitions

Firstly, we define the logical languages and the notion of logic used in this paper.

Definition 2.1 (Languages) The propositional language consists of a denu-

merable set of propositional variables 0 1    and some or all of the fol-

lowing connectives → (conditional), ∧ (conjunction), ∨ (disjunction), ¬ (nega-
tion),  (necessity),  (possibility). The biconditional (↔) and the set of wffs
are defined in the customary way.  (possibly with subscripts 0 1  ),
etc. are metalinguistic variables. By P and F , we shall refer to the set of all
propositional variables and the set of all wff, respectively.

Definition 2.2 (Logics) A logic S is a structure (L, `S ) where L is a propo-
sitional language and `S is a (proof-theoretical) consequence relation defined on
L by a set of axioms and a set of rules of derivation. The notions of ‘proof’ and

‘theorem’ are understood as it is customary in Hilbert-style axiomatic systems

(Γ `S  means that  is derivable from the set of wffs Γ in S; and `S  means

that  is a theorem of S).

Next, the notion of a logical matrix and related notions are defined.
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Definition 2.3 (Logical matrix) A (logical) matrix is a structure (V F)
where (1) V is a (ordered) set of (truth) values; (2)  is a non-empty proper

subset of V (the set of designated values); and (3) F is the set of -ary functions
on V such that for each -ary connective  (of the propositional language in

question), there is a function  ∈ F such that V → V.
Definition 2.4 (M-interpretations, M-consequence, M-validity) Let M

be a matrix for (a propositional language) L. An M-interpretation  is a function

from F to V according to the functions in F. Then, for any set of wffs Γ and
wff , Γ ²M  ( is a consequence of Γ according to M) iff () ∈  whenever

(Γ) ∈  for all M-interpretations  ((Γ) ∈  iff () ∈  for each  ∈ Γ).
In particular, ²M  ( is M-valid;  is valid in the matrix M) iff () ∈  for

all M-interpretations . (By ²M we shall refer to the relation defined in M).

We can now define Belnap and Dunn’s 4-element matrix MB4 (cf. [5], [6];

[11] and references therein). As pointed out in the Introduction, Brady’s 4-

element matrix MBN4 is an implicative expansion of MB4.

Definition 2.5 (Belnap and Dunn’s matrix MB4) The propositional lan-

guage consists of the connectives ∧, ∨ and ¬. Belnap and Dunn’s matrix MB4
is the structure (V F) where (1) V = {0 1 2 3} and it is partially ordered as
shown in the following diagram

(2)  = {3 2}; (3) F = {∧ ∨ ¬} where ∧ and ∨ are defined as the
glb (or lattice meet) and the lub (or lattice join), respectively. Finally, ¬ is an
involution with ¬(0) = 3 ¬(3) = 0 ¬(1) = 1 and ¬(2) = 2. For the reader’s
convenience, we display the tables for ∧, ∨ and ¬:

∧ 0 1 2 3
0 0 0 0 0
1 0 1 0 1
2 0 0 2 2
3 0 1 2 3

∨ 0 1 2 3
0 0 1 2 3
1 1 1 3 3
2 2 3 2 3
3 3 3 3 3

¬ 0
0 3
1 1
2 2
3 0

The notions of an MB4-interptetation, MB4-consequence and MB4-validity

are defined according to the general Definition 2.4.

Remark 2.6 (On the intuitive meaning of the truth values in MB4)

The truth values 0 1 2 and 3 can intuitively be interpreted in MB4 as follows.
Let  and  represent truth and falsity. Then, 0 =  , 1 = (either), 2 =
(oth) and 3 =  (cf. [5], [6]) Or, in terms of subsets of { }, we have:
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0 = {}, 1 = ∅, 2 = { } and 3 = {} (cf. [11] and references therein).
It is in this sense that we speak of “bivalent semantics” when referring to the

Belnap-Dunn semantics: there are only two truth values and the possibility

of assigning both or neither to propositions. (We use the symbols 0 1 2 and 3
because they are convenient for using the tester in [15] in case the reader needs

one.)

2.2 The logicMBN4

In this subsection the modal expansion of Brady’s 4-valued logic BN4,MBN4, is

defined. The first step is the definition of Brady’s matrix MBN4, an implicative

expansion of MB4. Then, the matrix MMBN4, a modal expansion of MBN4,

is defined.

Definition 2.7 (Brady’s matrix MBN4) The propositional language consists

of the connectives →, ∧, ∨ and ¬. Brady’s matrix MBN4 is the structure

(V F) where (1) V and  are defined as in MB4 (Definition 2.5) and

F = {→ ∧ ∨ ¬} where ∧, ∨and ¬ are defined as in MB4 and → ac-

cording to the following table:

→ 0 1 2 3
0 3 3 3 3
1 1 3 1 3
2 0 1 2 3
3 0 1 0 3

The related notions of an MBN4-interpretation, etc. are defined according to

the general Definition 2.4 (we note that Brady uses the symbols     instead

of 0 1 2 3, respectively (cf. [8], p. 10)).

Definition 2.8 (The matrix MMBN4) The propositional language consists

of the connectives →, ∧, ∨, ¬ and . By MBN4 we refer to the modal expan-

sion of BN4 defined below in Definition 2.11. The 4-element (modal) matrix

MMBN4 is the structure (V F) where (1) V,  and F are defined exactly as

in the matrix MBN4 except for the addition of the unary function , which is

defined according to the following table:

0 1 2 3
 0 0 0 3

As in the preceding cases, the notions of an MMBN4-interpretation, etc.

are defined according to the general Definition 2.4.

It is important to remark that the necessity function  is not definable by

using the rest of the functions in the matrix MMBN4.

Proposition 2.9 (Non-definabililty of ) The function  is not definable

from the functions → ∧ ∨ and ¬ in matrix MMBN4.
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Proof. It suffices to note that →(2 2) = ∧(2 2) = ∨(2 2) = ¬(2) = 2 and
that formulas of the form  are never assigned the value 2.
In what follows, the logics BN4 andMBN4 are defined.

Definition 2.10 (The logic BN4) The logic BN4 can be axiomatized as fol-

lows:

Axioms

A1. → 

A2. (→ )→ [( → )→ (→ )]

A3. → [(→ )→ ]

A4. ( ∧)→  / ( ∧)→ 

A5. [(→ ) ∧ (→ )]→ [→ ( ∧)]
A6. → ( ∨) /  → ( ∨)
A7. [(→ ) ∧ ( → )]→ [( ∨)→ ]

A8. [ ∧ ( ∨ )]→ [( ∧) ∨ ( ∧ )]
A9. ¬¬→ 

A10. (→ ¬)→ ( → ¬)
A11. (¬ ∧)→ (→ )

A12. ¬→ [ ∨ (→ )]

A13. ( ∨ ¬) ∨ (→ )

A14.  ∨ [¬(→ )→ ]

Rules of derivation

Modus Ponens (MP):  & →  ⇒ 

Adjunction (Adj):  &  ⇒  ∧
Disjunctive Modus Ponens (dMP):  ∨ (→ ) &  ∨⇒  ∨

Brady’s original axiomatization of BN4 (cf. [8], p. 22) can be found in Sec-

tion 1 of the Appendix, where it is proved that the axiomatization of Definition

2.10 is equivalent to it.

Definition 2.11 (The modal logic MBN4) The modal logic MBN4 is ax-

iomatized when adding the following axioms and definition to BN4:

A15. → 

A16. → (¬ ∨ )
A17. ( ∧ ¬)→ 

Definition (possibility):  =df ¬¬
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The notions of ‘derivation’ and ‘theorem’ are understood in a standard sense

both in BN4 andMBN4 (cf. Definition 2.2). The following theorems and rule of

MBN4 are needed in the completeness proof. We note that T1-T4 are provable

in Anderson and Belnap’s FDE (actually, in its positive fragment, FDE+) (cf.

[1], §15.2), while T5-T11 are theorems of Contractionless Relevant Logic, RW,

which is axiomatized by A1-A10, MP and Adj (cf. for example, [27]).

Proposition 2.12 (Some theorems of MBN4) The following theses and

rule are provable inMBN4 (a proof is sketched to the right of each one of them):

T1. ↔ ( ∨) By FDE+

T2. [ ∨ ( ∨ )]↔ [( ∨) ∨ ] By FDE+

T3. [ ∨ ( ∧ )]↔ [( ∨) ∧ ( ∨)] By FDE+

T4. →  ⇒ ( ∨)→ ( ∨) By FDE+

T5. [→ ( → )]→ [ → (→ )] A2, A3

T6. → ¬¬ A1, A10

T7. (→ )→ (¬ → ¬) A10, T6

T8. (¬→ )→ (¬ → ) A9, T7

T9. (¬→ ¬)→ ( → ) T6, T8

T10. ¬( ∨)↔ (¬ ∧ ¬) A5, A6, T7; A4, A7, A10

T11. ¬( ∧)↔ (¬ ∨ ¬) A5, A6, T8; A4, A7, A10, T7

T12.  → [¬ ∨ (→ )] A9, A12, T9

T13. ¬ ∨ [¬(→ )→ ¬] A14, T7, T9

T14. ( ∧ ¬)→ [( ∧ ¬)→ ¬(→ )] A4, A10, T5, T7

T15. [¬(→ ) ∧ ¬]→  A12, A9, T7, T10

T16. [¬(→ ) ∧]→ ¬ T6, T7, T10, T12

T17. ¬→ ¬ A15, T7

T18.  ∨ ¬ A9, A17, T7, T11

In Proposition 3.25, we have recorded a selection of significant modal theo-

rems ofMBN4. Now, let us note the following definition.

Definition 2.13 (Logics determined by matrices) Let L be a propositional

language, M a matrix for L and `S a (proof theoretical) consequence relation
defined on L. Then, the logic S (cf. Definition 2.2) is determined by M iff for

every set of wffs Γ and wff , Γ `S  iff Γ ²M . In particular, the logic S

(considered as the set of its theorems) is determined by M iff for every wff ,

`S  iff ²M  (cf. Definition 2.4).

In [8], Brady shows that the logic BN4 (as axiomatized by him –cf. [8],

p. 22 and Section 1 of the Appendix) is determined by the matrix MBN4.

By leaning on Brady’s strategy and proof, we will show, on our part, that the

logic MBN4 is determined by the matrix MMBN4, that is, that MMBN4 is
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a characteristic matrix for MBN4. A corollary of this fact is that BN4, as

axiomatized in Definition 2.10, is determined by MBN4 (cf. Corollary 3.22).

2.3 Belnap-Dunn type semantics forMBN4

In this subsection a Belnap-Dunn type semantics for MBN4 is provided and

the soundness theorem is proved. This semantics is “bivalent” in the sense of

Remark 2.6. Firstly,MBN4-models and the notions ofMBN4-consequence and

MBN4-validity are defined (cf. [8], p. 23).

Definition 2.14 (MBN4-models) An MBN4-model is a structure (4 )
where (i) 4 = {{} {} { } ∅}; (ii)  is an MBN4-interpretation from

F to 4, this notion being defined according to the following conditions for all
 ∈ P and  ∈ F : (1) () ∈ 4; (2a)  ∈ (¬) iff  ∈ (); (2b)
 ∈ (¬) iff  ∈ (); (3a)  ∈ ( ∧ ) iff  ∈ () and  ∈ (); (3b)
 ∈ ( ∧ ) iff  ∈ () or  ∈ (); (4a)  ∈ ( ∨ ) iff  ∈ () or
 ∈ (); (4b)  ∈ ( ∨) iff  ∈ () and  ∈ (); (5a)  ∈ (→ )
iff ( ∈ () or  ∈ ()) and ( ∈ () or  ∈ ()); (5b)  ∈ ( → )
iff  ∈ () and  ∈ (); (6a)  ∈ () iff  ∈ () and  ∈ (); (6b)
 ∈ () iff  ∈ ().

Definition 2.15 (MBN4-consequence; MBN4-validity) For any set of wffs

Γ and wff , Γ ²M  ( is a consequence of Γ in the MBN4-model M)

iff  ∈ () if  ∈ (Γ) ( ∈ (Γ) iff ∀ ∈ Γ( ∈ ());  ∈ (Γ) iff
∃ ∈ Γ( ∈ ())). In particular, ²M  ( is true in M) iff  ∈ (). Then,
Γ ²MBN4  ( is a consequence of Γ inMBN4-semantics) iff Γ ²M  for each

MBN4-model M. In particular, ²MBN4  ( is valid in MBN4-semantics) iff

²M  for each MBN4-model M (by ²MBN4, we shall refer to the relation just

defined).

We note the following remark.

Remark 2.16 (On the clauses for the possibility operator) Notice that,

given the definition of the possibility operator  (cf. Definition 2.11), the

clauses for  are as follows: (7a)  ∈ () iff  ∈ () or  ∈ ();
(7b)  ∈ () iff  ∈ ().

Now, it is easy to show that ²MMBN4 (the consequence relation defined in

the matrix MMBN4; cf. Definition 2.8) and ²MBN4 (the consequence relation

just defined inMBN4-semantics) are coextensive (cf. [8], p. 24).

Proposition 2.17 (Coextensiveness of ²MMBN4 and ²MBN4) For any set

of wffs Γ and wff , Γ ²MMBN4  iff Γ ²MBN4 . In particular, ²MMBN4 

iff ²MBN4 .

Proof. Cf. [8], Theorem 8.

We end this subsection by proving soundness and remarking that the neces-

sitation rule is not only not derivable in MBN4 but also inadmissible in this

logic.
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Theorem 2.18 (Soundness of MBN4 w.r.t. ²MMBN4) For any set of wffs

Γ and wff , if Γ `MBN4 , then Γ ²MMBN4 .

Proof. Induction on the length of the derivation supporting the claim Γ `MBN4

. The proof is left to the reader. (In case a tester is needed, the reader can

use that in [15].)

An immediate corollary of Theorem 2.18 is the following:

Corollary 2.19 (Soundness of MBN4 w.r.t. ²MBN4) For any set of wffs

Γ and wff , if Γ `MBN4 , then Γ ²MBN4 .

Proof. Immediate by Proposition 2.17 and Theorem 2.18.

Proposition 2.20 (Inadmissibility of Nec in MBN4) The rule Necessita-

tion (Nec) ⇒  is not admissible inMBN4.

Proof. Let  be a propositional variable. The wff ( → ) is falsified by
any MMBN4-interpretation assigning 2 to  (cf. [1], pp. 53-54 on the notions
derivable rule and admissible rule).

3 Completeness of MBN4

In this section, we prove that MBN4 is complete w.r.t. ²MBN4, the relation

defined in MBN4-semantics (cf. Definition 2.15). Then, completeness w.r.t.

²MMBN4, the relation defined in the matrix MMBN4 (cf. Definition 2.8) follows

immediately by Proposition 2.17. The first subsection investigates properties

ofMBN4-theories; the second one is dedicated to the extension and primeness

lemmas, and finally, in the third one, canonical models are defined and the

completeness theorem is proved.

3.1 MBN4-theories

We begin by defining the notion of aMBN4-theory and the classes ofMBN4-

theories considered in this paper.

Definition 3.1 (MBN4-theories) AnMBN4-theory (theory, for short) is a

set of formulas closed under Adjunction (Adj), Modus Ponens (MP), provable

MBN4-implication (MBN4-imp) and Disjunctive Modus Ponens (dMP). That

is, T is a theory iff for  ∈ F , we have (1) whenever  ∈ T , ∧ ∈ T
(Adj); (2) whenever →  ∈ T and  ∈ T ,  ∈ T (MP); (3) whenever → 

is a theorem ofMBN4 and  ∈ T , then  ∈ T (MBN4-imp); and (4) whenever

 ∨ (→ ) ∈ T and  ∨ ∈ T , then  ∨ ∈ T (dMP).

Definition 3.2 (Classes of theories) Let T be a theory. We set (1) T is

prime iff, for  ∈ F , whenever  ∨ ∈ T , then  ∈ T or  ∈ T ; (2) T is

regular iff T contains all theorems ofMBN4; (3) T is trivial iff it contains all

wffs; finally, (4) T is a-consistent (consistent in an absolute sense) iff T is not

trivial.
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Next, we record a couple of properties of theories.

Proposition 3.3 (Closure under Modus Tollens) If T is a theory, then it

is closed under Modus Tollens (MT). That is, for  ∈ F , if →  ∈ T and

¬ ∈ T , then ¬ ∈ T .
Proof. Let T be a theory and suppose for  ∈ F , →  ∈ T and ¬ ∈ T .
By T7, ¬ → ¬ ∈ T , whence ¬ ∈ T by MP.

Lemma 3.4 (Theories and double negation) Let T be a theory. For  ∈
F ,  ∈ T iff ¬¬ ∈ T .
Proof. Immediate by A9 and T6.

In what follows, we turn to prove some properties of prime theories and of

a-consistent and/or regular and prime theories.

Lemma 3.5 (Conjunction and disjunction in prime theories) Let T be

a prime theory and  ∈ F. Then, (1a)  ∧  ∈ T iff  ∈ T and  ∈ T ;
(1b) ¬(∧) ∈ T iff ¬ ∈ T or ¬ ∈ T ; (2a) ∨ ∈ T iff  ∈ T or  ∈ T ;
(2b) ¬( ∨) ∈ T iff ¬ ∈ T and ¬ ∈ T .
Proof. Case 1a: by A4 and fact that T is closed under Adj. Case 1b: by T11

and the fact that T is prime. Case 2a: by A6 and the fact that T is prime.

Case 2b: by T10 and the fact that T is closed under Adj.

Lemma 3.6 (The conditional in regular prime theories)

Let T be a regular and prime theory and  ∈ F . Then, (1)  →  ∈ T iff

( ∈ T or  ∈ T ) and (¬ ∈ T or ¬ ∈ T ); (2) ¬( → ) ∈ T iff  ∈ T
and ¬ ∈ T .
Proof. (1a)  →  ∈ T ⇒ ( ∈ T or  ∈ T ) and (¬ ∈ T or ¬ ∈ T ).
Suppose  →  ∈ T and, for reductio, (i)  ∈ T and  ∈ T or (ii) ¬ ∈ T
and ¬ ∈ T . But (i) and (ii) are impossible since T is closed under MP

and MT (cf. Proposition 3.3). (1b) ( ∈ T or  ∈ T ) and (¬ ∈ T or

¬ ∈ T ) ⇒  →  ∈ T . We have to consider the four alternatives (i)-

(iv) below. (i)  ∈ T and ¬ ∈ T . By A12, ¬ → [ ∨ ( → )]. So,
 ∨ ( → ) ∈ T whence  →  ∈ T by the primeness of T . (ii)  ∈ T
and ¬ ∈ T . By A13 and the regularity of T , ( ∨ ¬) ∨ ( → ) ∈ T .
Thus,  →  ∈ T by the primeness of T . (iii)  ∈ T and ¬ ∈ T . By A11,
(¬ ∧ ) → ( → ). Then,  →  ∈ T follows immediately. (iv)  ∈ T
and ¬ ∈ T . Then, →  ∈ T follows, similarly as in (1b) (i), by T12 ( →
[¬ ∨ (→ )]). (2a) ¬(→ ) ∈ T ⇒ (  ∈ T and ¬ ∈ T ). For reductio,
suppose ¬( → ) ∈ T but (i)  ∈ T or (ii) ¬ ∈ T . Let us consider case i.
By A14,  ∨ [¬(→ )→ ] ∈ T hence ¬(→ )→  ∈ T and, finally, by

MP,  ∈ T , contradicting (i). That (ii) is impossible is similarly shown by using
T13 (¬∨ [¬(→ )→ ¬]). (2b) (  ∈ T and ¬ ∈ T )⇒ ¬(→ ) ∈ T .
By T14, ( ∧ ¬)→ [( ∧ ¬)→ ¬(→ )]. Then, as  ∧ ¬ ∈ T , we have
( ∧ ¬)→ (→ ) ∈ T byMBN4-imp and ¬(→ ) ∈ T by MP.
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Lemma 3.7 (The necessity operator in a-cons. reg. prime theories)

Let T be an a-consistent, regular and prime theory and  ∈ F . Then, (1)

 ∈ T iff  ∈ T and ¬ ∈ T ; (2) ¬ ∈ T iff  ∈ T .
Proof. (1a)  ∈ T ⇒ ( ∈ T and ¬ ∈ T ). Suppose  ∈ T . By A15
( → ),  ∈ T . Suppose now ¬ ∈ T and let  be an arbitrary wff. By

T17 (¬→ ¬), ¬ ∈ T hence  ∧ ¬ ∈ T and, finally,  ∈ T by A17

(( ∧ ¬) → ), contradicting the a-consistency of T . (1b) ( ∈ T and

¬ ∈ T ) ⇒  ∈ T . By A15 ( → (¬ ∨ )),  ∈ T . (2a) ¬ ∈ T ⇒
 ∈ T . Suppose ¬ ∈ T but  ∈ T and let  be an arbitrary wff. Then

 ∈ T by A17 (( ∧ ¬)→ ), contradicting the a-consistency of T . (2b)
 ∈ T ⇒ ¬ ∈ T . It follows immediately by  ∨ ¬ (T18) and the

primeness of T .

3.2 Extension and primeness lemmas

Firstly, we set a preliminary definition (cf. [8], pp. 24-25).

Definition 3.8 (Disjunctive MBN4-derivability) For any sets of wffs Γ,
Θ, Θ is disjunctively derivable from Γ in MBN4 (in symbols, Γ `MBN4 Θ) iff
1∧∧ `MBN4 1∨∨ for some wffs 1   ∈ Γ and 1   ∈ Θ.
Next, we prove a lemma which is essential in order to prove the extension

to maximal sets lemma. (In the rest of the section the subscriptMBN4 is, in

general, dropped from `MBN4 since no confusion can arise asMBN4 is the only

logic treated throughout Section 3.)

Lemma 3.9 (Main auxiliary lemma) For any 1   ∈ F , if {1 
} `MBN4 , then, for any wff ,  ∨ (1 ∧  ∧) `MBN4  ∨.
Proof. (Cf. [8], p. 27) Induction on the length of the proof of  from

{1  } (H.I abbreviates hypothesis of induction). (1)  ∈ {1  }.
Let  be  (1 ≤  ≤ ). By elementary properties of ∧, ` (1∧ ∧)→ .

By T4 (→  ⇒ ( ∨)→ ( ∨)),  ∨ (1 ∧ ∧) `  ∨. (2)  is an
axiom. By A4, `  ∨. So,  ∨ (1 ∧ ∧) `  ∨. (3)  is by Adj. Then,
 is  ∧  for some wffs  and . By H.I,  ∨ (1 ∧  ∧ ) `  ∨ and

∨(1∧ ∧) ` ∨ whence ∨(1∧ ∧) ` (∨)∧(∨) by Adj.
Finally, ∨(1∧∧) ` ∨(∧) by T3 ([∨(∧)]↔ [(∨)∧(∨)]).
(4)  is by MP. By H.I, ∨(1∧∧) ` ∨(→ ) and ∨(1∧∧) `
 ∨  for some wff . So,  ∨ (1 ∧  ∧ ) `  ∨  by dMP. (5)  is by

dMP. Then,  is  ∨  for some wffs  and . By H.I,  ∨ (1 ∧  ∧) `
 ∨ (∨ ) and  ∨ (1∧ ∧) `  ∨ [∨ ( → )] for some wff  , whence

 ∨ (1 ∧ ∧) ` ( ∨)∨ and  ∨ (1 ∧ ∧) ` ( ∨)∨ ( → )
by T2 ([∨ ( ∨)↔ [(∨)∨]). So,  ∨ (1 ∧ ∧) ` ( ∨)∨ by

dMP and, finally,  ∨ (1 ∧  ∧ ) `  ∨ ( ∨ ) by T2, as it was required
in case 5, which ends the proof of Lemma 3.9.

Now, we proceed to show how to extend sets of wffs to maximal sets (cf.

Lemma 9 in [8] and Chapter 4 in [27]).
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Definition 3.10 (Maximal sets) Γ is a maximal set of wffs iff Γ 0 Γ (Γ is
the complement of Γ).

Lemma 3.11 (Extension to maximal sets) Let Γ, Θ be sets of wffs such

that Γ 0 Θ. Then, there are sets of wffs Γ0, Θ0 such that Γ ⊆ Γ0, Θ ⊆ Θ0,
Θ0 = Γ

0
and Γ0 0 Θ0 (that is, Γ0 is a maximal set such that Γ0 0 Θ0).

Proof. Let 1    be an enumeration of the wffs. The sets Γ
0 and Θ0

are defined as follows: Γ0 =
[
∈N
Γ, Θ

0 =
[
∈N
Θ where Γ0 = Γ, Θ0 = Θ and for

each  ∈ N, Γ+1 and Θ+1 are defined as follows: (i) if Γ ∪ {+1} ` Θ,
then Γ+1 = Γ and Θ+1 = Θ ∪ {+1}; (ii) if Γ ∪ {+1} 0 Θ, then
Γ+1 = Γ ∪ {+1} and Θ+1 = Θ. Notice that Γ ⊆ Γ0, Θ ⊆ Θ0 and that
Γ0 ∪Θ0 = F . We prove (I) Γ 0 Θ for all  ∈ N. We proceed by reductio ad
absurdum. So, suppose that for some  ∈ N, (II) Γ 0 Θ but Γ+1 ` Θ+1.
We then consider the two possibilities (i) and (ii) above according to which Γ+1
and Θ+1 are defined: (a) Γ ∪ {+1} 0 Θ. By (ii), Γ+1 = Γ ∪ {+1} and
Θ+1 = Θ. By the reductio hypothesis (II), Γ∪{+1} ` Θ, a contradiction.
(b) Γ ∪ {+1} ` Θ. By (i), Γ+1 = Γ and Θ+1 = Θ ∪ {+1}. By the
reductio hypothesis (II), (1) Γ ` Θ∪{+1}. Now, let the formulas of Γ and
Θ in this derivation be 1   and 1  , respectively, and let us refer

by  to 1 ∧  ∧ and by  to 1 ∨  ∨ . Then (1) can be rephrased as

follows (2)  `  ∨ +1. On the other hand, given the hypothesis (b), there

is a conjunction 0 of elements of Γ and some disjunction 0 of elements of Θ
such that (3) 0 ∧+1 `  0. Let us now refer by 00 to  ∧0 and by 00 to
∨ 0; we will show (III) 00 ` 00, that is, Γ ` Θ, contradicting the reductio
hypothesis and thus proving (I). By elementary properties of ∧ and ∨, we have
(4) 00 ∧+1 ` 00 from (3), and (5) 00 ` 00 ∨+1 from (2). By (5), we get

(6) 00 `  00 ∨ (00 ∧ +1) and by (4) and Lemma 3.9, (7) 
00 ∨ (00 ∧ +1)

`  00∨00 whence by T1 (↔ (∨)), we have (8) 00∨(00∧+1) ` 00. By
(6) and (8) we get (III) 00 ` 00, that is, Γ ` Θ, contradicting the reductio
hypothesis. Consequently, (I) (Γ 0 Θ for all  ∈ N) is proved. Thus, we
have sets of wffs Γ0, Θ0 such that Γ ⊆ Γ0, Θ ⊆ Θ0, Θ0 = Γ0 and Γ0 0 Θ0 (since
Γ 0 Θ for all  ∈ N) and Θ0 = Γ0 (since Γ0 ∩ Θ0 = ∅ –otherwise Γ ` Θ
for some  ∈ N– and Γ0 ∪ Θ0 = F), as it was required. Finally, notice that Γ0
is maximal (since Γ0 0 Γ).
Before proving the primeness lemma we pause a second to remark the essen-

tial role Lemma 3.9 has played in the proof of the extension lemma just given

(notice that the rest of syntactical moves required in the said proof can be car-

ried on by leaning on the simple resources of the positive fragment of Anderson

and Belnap’s First Degree Entailment Logic FDE –cf. [1], §15.2 about this

logic).

Lemma 3.12 (Primeness) If Γ is a maximal set, then it is a prime theory.

Proof. (Cf. Lemma 8 in [8]) (1) Γ is a theory: It is trivial to prove that Γ is
a theory. For example, let us prove that Γ is closed under dMP. For reductio,
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suppose that there are wffs  such that  ∨ ∈ Γ,  ∨ (→ ) ∈ Γ but
∨ ∈ Γ. Then, (∨)∧[∨(→ )] ` ∨(→ ) and (∨)∧[∨(→
)] `  ∨, whence ( ∨) ∧ [ ∨ (→ )] `  ∨ by dMP, contradicting

the maximality of Γ. (2) Γ is prime: If there are some wffs  such that

 ∨  ∈ Γ but  ∈ Γ and  ∈ Γ, then Γ is not maximal by virtue of A1
(( ∨)→ ( ∨)).

3.3 Canonical models. Completeness

We shall define the notion of a canonical model and prove that each wff which

is not a theorem ofMBN4 is falsified in some canonical model. The concept of

a canonical model is based upon the notion of a T -interpretation.
Definition 3.13 (T -interpretations) Let 4 be the set {{} {} { } ∅}
as in Definition 2.14. And let T be an a-consistent, regular and prime theory.

Then, the function  from F to 4 is defined as follows: for each  ∈ P, we set
(a)  ∈ () iff  ∈ T ; (b)  ∈ () iff ¬ ∈ T . Next,  assigns a member of
4 to each  ∈ F according to conditions 2, 3, 4, 5 and 6 in Definition 2.14.

Then, it is said that  is a T -interpretation. (As in Definition 2.14,  ∈ (Γ)
iff ∀ ∈ Γ( ∈ ());  ∈ (Γ) iff ∃ ∈ Γ( ∈ ()).)

Definition 3.14 (Canonical MBN4-models) A canonicalMBN4-model is

a structure (4 T ) where 4 is defined as in Definition 2.14 (or as in Defin-
ition 3.14) and T is a T -interpretation built upon an a-consistent, regular and
prime theory T .
Definition 3.15 (The canonical relation ²T ) Let (4 T ) be a canonical
model, the canonical relation ²T is defined as follows. For any set of wffs Γ and
wff , Γ ²T  iff  ∈ T () if  ∈ T (Γ). In particular, ²T  ( is true in

the canonicalMBN4-model (4 T )), iff  ∈ T ().

By Definition 2.14 and 3.14, it is clear that any canonicalMBN4-model is

aMBN4-model.

Proposition 3.16 (Any canonical MBN4-model is a MBN4-model)

Let M = (4 T ) be a canonical MBN4-model. Then, M is indeed a MBN4-

model.

Proof. It follows immediately by Definition 2.14 and 3.14 (by the way, no-

tice that each propositional variable –and so, each wff – can be assigned

{} {} { } or ∅, since T is required to be a-consistent but neither com-

plete nor consistent in the classical sense).

The following lemma generalizes conditions  and  in Definition 3.13 to the

set F of all wffs.

Lemma 3.17 (T -interpreting the set of wffs F) Let  be a T -interpretation
defined on the theory T . For each  ∈ F , we have: (1)  ∈ () iff  ∈ T ; (2)
 ∈ () iff ¬ ∈ T .
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Proof. Induction on the length of  (the clauses cited in points (a), (b), (c),

(d), (e) and (f) below refer to the clauses in Definition 3.13 –Definition 2.14–

H.I abbreviates “hypothesis of induction”). (a)  is a propositional variable:

by conditions (a) and (b) in Definition 3.13. (b)  is of the form ¬: (i)

 ∈ (¬) iff (clause 2a)  ∈ () iff (H.I) ¬ ∈ T . (ii)  ∈ (¬) iff (clause
2b)  ∈ () iff (H.I)  ∈ T iff (Lemma 3.4) ¬¬ ∈ T . (c)  is of the form

 ∧: (i)  ∈ ( ∧) iff (clause 3a)  ∈ () and  ∈ () iff (H.I)  ∈ T
and  ∈ T iff (Lemma 3.5) ∧ ∈ T . (ii)  ∈ (∧) iff (clause 3b)  ∈ ()
or  ∈ () iff (H.I) ¬ ∈ T or ¬ ∈ T iff (Lemma 3.5) ¬( ∧ ) ∈ T . (d)
 is of the form  ∨ : the proof is similar to (c) by using clauses 4a, 4b and
Lemma 3.5. (e)  is of the form  → : (i)  ∈ ( → ) iff (clause 5a)
( ∈ () or  ∈ ()) and ( ∈ () or  ∈ ()) iff (H.I) ( ∈ T or  ∈ T )
and (¬ ∈ T or ¬ ∈ T ) iff (Lemma 3.6)  →  ∈ T . (ii)  ∈ ( → ) iff
(clause 5b)  ∈ () and  ∈ () iff (H.I)  ∈ T and ¬ ∈ T iff (Lemma

3.6) ¬( → ) ∈ T . (f)  is of the form : (i)  ∈ () iff (clause 6a)
 ∈ () and  ∈ () iff (H.I)  ∈ T and ¬ ∈ T iff (Lemma 3.7)  ∈ T .
(ii)  ∈ () iff (clause 6b)  ∈ () iff (Lemma 3.7) ¬ ∈ T .
In what follows, we prove completeness.

Definition 3.18 (The set CnΓ[MBN4]) The set of consequences inMBN4

of a set of wffs Γ (in symbols CnΓ[MBN4]) is defined as follows: CnΓ[MBN4] =
{ | Γ `MBN4 } (cf. Definitions 2.2 and 2.11).

We note the following remark.

Remark 3.19 (CnΓ[MBN4] is a regular theory) It is obvious that for any
Γ, CnΓ[MBN4] is closed under the rules of MBN4 and contains all theorems

of this logic. Consequently, it is closed underMBN4-imp.

Theorem 3.20 (Completeness of MBN4 w.r.t. ²MBN4) For any set of

wffs Γ and wff , if Γ ²MBN4 , then Γ `MBN4 .

Proof. For some set of wffs Γ and wff  suppose Γ 0MBN4 . We prove

Γ 2MBN4 . If Γ 0MBN4 , then  ∈ CnΓ[MBN4]. Thus, CnΓ[MBN4] 0MBN4

{}: otherwise 1∧∧ `MBN4  for some 1  ∈ CnΓ[MBN4], whence
 would be in CnΓ[MBN4] after all. Then, by Lemma 3.11, there is a maximal
set Γ0 such that CnΓ[MBN4] ⊆ Γ0. So, Γ ⊆ Γ0 (since Γ ⊆ CnΓ[MBN4]) and
 ∈ Γ0. By Lemma 3.12 Γ0 is a prime theory; moreover Γ0 is regular since
CnΓ[MBN4] is regular, and it is a-consistent since  ∈ Γ0. Thus, Γ0 generates a
T -interpretation Γ0 such that, by Lemma 3.17,  ∈ Γ0(Γ) (since  ∈ Γ0(Γ

0))
but  ∈ Γ0(). So, Γ 2Γ0  by Definition 3.15, whence Γ 2MBN4  by

Definition 2.15 and Proposition 3.16.

We have the following corollaries.

Corollary 3.21 (Strong sound. and comp. w.r.t. ²MBN4 and ²MMBN4)

For any set of wffs Γ and wff , we have (1) Γ `MBN4  iff Γ ²MBN4 ; (2)

Γ `MBN4  iff Γ ²MMBN4 .
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Proof. (1) By Corollary 2.19 and Theorem 3.20. (2) By Theorem 2.18 and

Theorem 3.20 with Proposition 2.17.

Notice that throughout the completeness proof developed in this section, the

modal axioms A15-A17 (cf. Definition 2.11) have been used only in Proposition

3.7 (‘The necessity operator in a-consistent, prime regular theories’), proposition

which in its turn is used in the proof of the clauses concerning the necessity

operator in Proposition 3.17 (‘T -interpreting the set of wffs F ’). That BN4 (as
axiomatized in Definition 2.10) is sound and complete w.r.t. ²MBN4 and that
MBN4 is a conservative expansion of BN4 follow from this fact.

Now let a BN4-model be a structure (4 ) where 4 and  are defined

similarly as in aMBN4-model (Definition 2.14) except that clauses 6a and 6b

for the modal operator are dropped. Then, define the relation ²BN4 similarly as
the relation ²MBN4 was defined (Definition 2.15). Then, we record the following

corollaries.

Corollary 3.22 (Soundness and completeness of BN4) For any set of

wffs Γ and wff , Γ `BN4  iff Γ ²MBN4  iff Γ ²BN4 .

Proof. Given the fact remarked above, soundness follows from Theorem 2.18

and Corollary 2.19, and completeness by Corollary 3.21.

Corollary 3.23 (MBN4 is a conservative extension of BN4) The logic

MBN4 is a conservative extension of BN4. That is, if ²MBN4  and  does

not appear in , then ²BN4 .

Proof. As pointed out above, it follows from the soundness and completeness

proofs ofMBN4 and BN4.

The section is ended with some remarks.

We have seen that the rule Nec (Necessitation) is not admissible inMBN4

(Proposition 2.20). The ‘replacement theorem’, however, holds in this logic.

Proposition 3.24 (The replacement theorem) For any wffs  if `MBN4

 ↔ , then `MBN4 [] ↔ [] ([] is a wff in which  appears;

[] is the result of substituting  by  in one or more places in which 

occurs).

Proof. By induction on the length of [] since if `MBN4  ↔ , then, for

any  ∈ F , (a) `MBN4 ( ∧ ) ↔ ( ∧ ), (b) `MBN4 ( ∨ ) ↔ ( ∨ ),
(c) `MBN4 ¬↔ ¬ and (d) `MBN4 ↔  are admissible rules inMBN4

(the thesis (→ )→ (→ ), for example, fails only when  is assigned

3 and  is assigned 1).

Next, we note some provable and unprovable wffs inMBN4 (in case a tester

is needed, the reader can use that in [15]).

Proposition 3.25 (Some modal theses provable in MBN4) The follow-

ing are provable inMBN4: (t1) ↔ ¬¬; (t2) ↔ ¬¬; (t3) →
; (t4) →; (t5) → ; (t6)→; (t7)→ ; (t8)
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 → ; (t9) ( ∧ ) ↔ ( ∧ ); (t10) ( ∨ ) ↔ ( ∨);
(t11) ( → ) → ( → ); (t12) ( → ) → ( → ); (t13)
(→ )→ (→ ); (t14) ( ∨ )→ ( ∨); (t15) ( ∧)→
( ∧); (t16) ( ∨)→ ( ∨); (t17) ( ∧ )→( ∧);
(t18) ∨¬; (t19) ¬∨; (t20) (∧¬)→ ; (t21)  → (∨¬);
(t22) (¬ ∧)→ ¬; (t23) ( ∧ ¬)→ ; (t24) ¬→ ( ∨ ¬).

Proof. Theses t1-t24 are verified by any MMBN4-interpretation. Then, they

are provable by the completeness theorem (Corollary 3.21).

Notice that theses t1-t21, as well as A15 and A17, are provable in Lewis’

system S5 (when→ is interpreted as the material conditional); t22-t24 and A16

are, however, not provable in this logic. Actually, it is easy to see that addition

of any of them to S5 would cause the collapse of S5 into classical propositional

logic.

We record some wffs not provable inMBN4.

Proposition 3.26 (Some modal wffs not provable in MBN4) The follow-

ing are not provable inMBN4: (f1) → ; (f2) → ; (f3) → ;

(f4) →, (f5) (→ )→ (→); (f6) (→ )→ (→ );
(f7) ( ∨ ) → ( ∨ ); (f8) ( ∧ ) → ( ∧ ); (f9)  →
( → ); (f10)  → ( → ); (f11) ( → ) → ( → ); (f12)
(→)→(→ ).

Proof. Formulas f1-f12 are falsified in the matrix MMBN4. Then, they are

not provable by the soundness theorem (Corollary 3.21).

The schemes f5-f10 are labelled ‘Łukasiewicz-type paradoxes’ (cf. [22] and

references therein). So,MBN4 is free from this type of paradoxes. On the other

hand, notice that (when → is read as the material conditional) f11 and f12 are

provable in Feys-von Wright modal system T (so they are provable in Lewis’

systems S4 and S5). In sum, Propositions 3.25 and 3.26 support the conclusion

thatMBN4 can be understood as a strong and genuine (4-valued) modal logic.

Finally, we note that the logicMBN4 is paraconsistent.

Proposition 3.27 (MBN4 is paraconsistent) The logicMBN4 is paracon-

sistent, that is, the rule Ecq (‘E contradiction quodlibet’) ¬ ⇒  is not

provable inMBN4.

Proof. Let ,  be propositional variables and  be an MMBN4-interpretation

such that () = 2 and () = 1. Then, {¬} 2MMBN4 . So, Ecq does

not hold inMBN4.

However, notice that if a theory contains a formula of the form  and its

negation, this theory collapses into triviality, as A17 indicates.
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4 The logic EBN4

4.1 A definitional extension of BN4: the logic EBN4

The logic EBN4 is a definitional extension of BN4. Following Tarski’s suggestion

for introducing the modal operators  and  in Łukasiewicz’s many-valued

logics (cf. [12], Notes 2 and 3), we set the following definition in BN4.

Definition 4.1 (Tarskian definitions of  and ) For any wff : (Df)

 =df ¬(→ ¬); (Df)  =df ¬→ .

Then, notice that we have  ↔ ¬¬,  ↔ ¬¬ and the rule Nec

(Necessitation)  ⇒ , since  ⇒ ¬( → ¬) is an admissible rule in BN4.
Moreover, the following propositions are provable.

Proposition 4.2 (Modal theses provable in EBN4) The following theses

in Proposition 3.25 are also provable in EBN4: t1-t15, t18, t19, t22-t24. In

addition, f11 and f12 in Proposition 3.26 are also provable although they are not

provable inMBN4.

Proof. Similar to that of Proposition 3.25 by using Definition 4.1.

Proposition 4.3 (Some modal wffs not provable in EBN4) The follow-

ing wffs in Proposition 3.26 are not provable in EBN4: f1-f10. In addition,

theses t16, t17, t20 and t21 in Proposition 3.25, which are provable in MBN4,

are not provable in EBN4.

Proof. Similar to that of Proposition 3.26 by using Definition 4.1.

Recall that t1-t21 as well as f11, f12 and Nec hold in S5, while t22-t24 (along

with f1-f10) are not provable in this logic (if → is understood to represent the

material conditional). Thus, EBN4 lacks Łukasiewicz type paradoxes unlike it

is the case with Łukasiewicz’s many-valued logics when the modal operators are

introduced according to the tarskian suggestions recalled in Definition 4.1.

We note that the tables for  and  in EBN4 are as follows:

0 1 2 3
 0 0 2 3

0 1 2 3
 0 3 2 3

And the clauses in Belnap-Dunn type semantics are: (6a0)  ∈ () iff
 ∈ (); (6b0)  ∈ () iff  ∈ () or  ∈ (). Now, the clauses for 
and  in MBN4 are (cf. Definition 2.14): (6a)  ∈ () iff  ∈ () and
 ∈ (); (6b)  ∈ () iff  ∈ (). Therefore, the essential difference
between the meaning of  inMBN4 and EBN4 is that if () = (oth),  is

assigned (oth) in the latter logic while it is  (alse) in the former. This fact is

reflected in the following proposition.

Proposition 4.4 (Relationship between MBN4 and EBN4) We have

`MBN4 → ¬(→ ¬) but 0MBN4 ¬(→ ¬)→ .

Proof. By the soundness and completeness theorems (Corollary 3.21).
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4.2 The logics BN40 andMBN40

We think that it is interesting to remark that clauses 6a0 and 6b0 recorded above
can be shown to work canonically if the following axioms and rules are available:

→ , ∨¬, (∧¬)→ ¬, Nec and Disjunctive Necessitation dNec.
So,  and  can be introduced in any logic similar to BN4 and interpretable

with Belnap-Dunn type semantics, provided the quoted axioms and rules are

present. Let us end this section by examining, as a way of an example, the logic

BN40, a variant of BN4, and its modal expansionMBN40.

Definition 4.5 (The logic BN40) The logic BN40 is axiomatized when adding
to BN4 the axiom A18 (¬ ∨ ) ∨ ¬( → ) (not provable in BN4) and
substituting the axioms (not provable in BN40) A11 and A14 by A19 (¬∧)→
[(¬∧)→ (→ )] and A20 ¬→ [¬ ∨ [¬(→ )→ ¬]], respectively.
Next, we define the modal expansionMBN40 of BN40 according to the sug-

gestions briefly discussed above and remark some theorems ofMBN40.

Definition 4.6 (The modal logic MBN40) The logicMBN40 is axiomatized
when adding the following axioms, rules and definition to BN40: A15 → ,

A21 ∨¬, A22 (∧¬)→ ¬, Necessitation (Nec) ⇒ , Disjunc-

tive Necessitation (dNec)  ∨  ⇒  ∨ , Definition (Possibility)  =df
¬¬.
Proposition 4.7 (Some theorems of MBN40) The following are provable
inMBN40: T1-T12, T14-T18 ofMBN4 (cf. Proposition 2.12). And, in addi-

tion, T19  → [ ∨ [¬(→ )→ ]].

Proof. T1-T12, T14-T18 are proved similarly as in Proposition 2.12. Next,

T19 is proved by A9, A20, T6, T7 and T9.

Consider now the following matrices which are variants of MBN4 andMMBN4.

Definition 4.8 (The matrix MBN40) The matrix MBN40 is defined exactly
as the matrix MBN4 (cf. Definition 2.7) except for the function → which is

now defined according to the following truth table:

→ 0 1 2 3
0 3 3 3 3
1 0 2 1 3
2 0 1 2 3
3 0 0 0 3

Definition 4.9 (The matrix MMBN40) The matrix MMBN40 is defined ex-
actly as the matrix MMBN4 (Definition 2.8) except for the functions → and

. The former is defined as in the matrix MBN4
0 while the latter is defined

according to the following truth-table:

0 1 2 3
 0 0 2 3
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Notice that the tarskian definitions do not work in BN40 since  and  are

equivalently defined by the following truth table:

0 1 2 3
 /  0 2 2 3

On the other hand, the question whether the table in Definition 4.9 is de-

finable from the rest of the connectives of BN40 is not important here because
MBN40 is introduced as a mere example.
The proof of the soundness theorems is left to the reader. On our part, we

shall sketch a proof that BN40 (MBN40) is determined by the matrix MBN40

(MMBN40) (cf. Definition 2.13). We follow the pattern set in Section 3 for

proving completeness of BN4 andMBN4. The idea is to provide Belnap-Dunn

type models forMBN40 and next to define canonical models upon regular and
prime theories (a-consistency is not needed in the case of MBN40). By using
the extension and primeness lemmas, it is then shown that each non theorem of

BN40 (MBN40) fails to belong to some regular and prime theory; that is, it is
shown that each non theorem of BN40 (MBN40) is not true in some canonical
model.

As just pointed out, the first step is to define a Belnap-Dunn type semantics

forMBN40. Then, some slight modifications of some of the lemmas in Section
3 will suffice.

Definition 4.10 (MBN40-models) MBN40-models are defined similarly as
MBN4-models (Definition 2.14) except that clauses 5b, 6a and 6b are replaced

by the following clauses: (5b0)  ∈ ( → ) iff ( ∈ () and  ∈ ()) or
( ∈ () and  ∈ ()); (6a0)  ∈ () iff  ∈ (); (6b0)  ∈ () iff
 ∈ () or  ∈ ().

The notions of MBN40-consequence and MBN40-validity are defined simi-
larly as in MBN4-models (cf. Definition 2.15). In what follows Lemmas 3.6,

3.7, 3.9 and 3.12 are slightly reformulated. Firstly we need to modify the notion

of a theory.

Definition 4.11 (MBN40-theories) AnMBN40-theory (theory, for short) is
a set of formulas closed under Adj, MP,MBN40-imp, as in the case ofMBN4-

theories (cf. Definition 3.1) and, in addition, by Necessitation (Nec) and Dis-

junctive Necessitation (dNec) (a theory T is closed under Nec iff for  ∈ F ,
if  ∈ T , then  ∈ T ; a theory T is closed under dNec iff for  ∈ F , if
 ∨ ∈ T , then  ∨  ∈ T ).

Next, we prove Lemma 4.12. This lemma modifies Lemma 3.6.

Lemma 4.12 (→ in regular and prime theories) Let T be a regular and

prime theory and  ∈ F . Then, (1)  →  ∈ T iff ( ∈ T or  ∈ T ) and
(¬ ∈ T or ¬ ∈ T ); (2) ¬(→ ) ∈ T iff ( ∈ T and ¬ ∈ T ) or (¬ ∈ T
and  ∈ T ).
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Proof. It is similar to that of Lemma 3.6. So, it will suffice to record the

theorems of BN40 used in each case. Case 1: (a) the fact that theories are closed
under MP and MT; (b) A12 (¬→ [∨(→ )]), A13 ((∨¬)∨(→ )),
A19 ((¬ ∧ ) → [(¬ ∧ ) → ( → )]) and T12 ( → [¬ ∨ ( → )]).
Case 2: (a) T15 ([¬( → ) ∧ ¬] → ), T16 ([¬( → ) ∧ ] → ¬); A20
(¬→ [¬ ∨ [¬(→ )→ ¬]]) and T19 ( → [ ∨ [¬(→ )→ ]]); (b)
T14 (( ∧ ¬)→ [( ∧ ¬)→ ¬(→ )]) and A18 ((¬ ∨) ∨ ¬(→ )).

Lemma 4.13 below substitutes former Lemma 3.7. (Notice that T needs not
be a-consistent.)

Lemma 4.13 ( in regular and prime theories) Let T be a regular and

prime theory and  ∈ F . Then, (1)  ∈ T iff  ∈ T ; (2) ¬ ∈ T iff

¬ ∈ T or  ∈ T .

Proof. (1) Immediate by A15 ( → ) and the fact that T is closed under

Nec. (2a) ¬ ∈ T ⇒ (¬ ∈ T or  ∈ T ). Suppose ¬ ∈ T and, for

reductio, ¬ ∈ T and  ∈ T . As T is closed under Nec,  ∧ ¬ ∈ T ,
whence, by A22 (( ∧ ¬)→ ¬), ¬ ∈ T , a contradiction. (2b) (¬ ∈ T
or  ∈ T )⇒ ¬ ∈ T . Immediate by T17 (¬→ ¬) and A21 ( ∨ ¬)
together with the primeness of T .
Lemma 4.14 adds to Lemma 3.9 the clauses corresponding to the rules Nec

and dNec.

Lemma 4.14 (Main auxiliary lemma) For any 1   ∈ F , if {1 
} `MBN40 , then, for any  ∈ F ,  ∨ (1 ∧  ∧) `MBN40  ∨.

Proof. If (1) ∈ {1  }, (2) is an axiom, (3) is by Adj, (4) is by MP
or (5)  is for dMP, the proof is similar to that of Lemma 3.9. So, let us consider

the cases where  is by Nec and by dNec. (6)  is by Nec: then,  is  for

 ∈ F ; by H.I, ∨(1∧∧) `MBN40 ∨. Then, ∨(1∧∧) `MBN40

 ∨  by dNec. (7)  is by dNec: then,  is  ∨  for  ∈ F . By H.I,
∨(∧∧) `MBN40 ∨(∨). Similarly as in case 5 of Lemma 3.9, we have
∨(∧∧) `MBN40 (∨)∨. So, ∨(∧∧) `MBN40 (∨)∨
by dNec and, finally,  ∨ ( ∧  ∧) `MBN40  ∨ ( ∨ ) by T2, as it was
required.

The following lemma, Lemma 4.15, modifies the primeness lemma, Lemma

3.12.

Lemma 4.15 (Primeness) If Γ is a maximal set, then it is a prime theory.

Proof. Given the proof of Lemma 3.12, it remains to prove that Γ is closed
under Nec and dNec, which is immediate. For example, let us consider dNec.

Suppose that there are wffs  such that  ∨  ∈ Γ but  ∨  ∈ Γ. As
 ∨  `MBN40  ∨ ,  ∨  `MBN40  ∨ , by dNec, contradicting the

maximality of Γ.
Finally, a modification of Lemma 3.17 has to be considered.
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Lemma 4.16 (T -interpreting the set of wffs F) Let  be a T -interpretation
defined on the theory T . For each  ∈ F , we have: (1)  ∈ () iff  ∈ T ; (2)
 ∈ () iff ¬ ∈ T .
Proof. Cases (e) and (f) of Lemma 3.17 have to be modified. But the required

modifications are immediate by using Lemmas 4.12 and 4.13 in a similar way

to which Lemmas 3.6 and 3.7 were used in the proof of Lemma 3.17.

Once the required modifications are done, completeness follows similarly, as

in the cases of BN4 and MBN4 (details are left to the reader). Thus, we end

the section by stating the following theorems.

Theorem 4.17 (Soundness and completeness of BN40) For any set of
wffs Γ and wff , Γ `BN40  iff Γ ²BN40  iff Γ ²MBN40 .
Theorem 4.18 (Soundness and completeness of MBN40) For any set of
wffs Γ and wff , Γ `MBN4 0  iff Γ ²MBN40  iff Γ ²MMBN40 .

5 Conclusions

In the present paper it has been shown that Łukasiewicz’s strategies for defining

truth-functional modal logics work in the context of an important 4-valued

logic, Brady’s paraconsistent logic BN4. As it was noted in the introduction to

this paper, that these strategies work mean on the one hand that Łukasiewicz

type paradoxes are avoided and, on the other hand, that the resulting modal

logics are not unworthy of consideration. Nevertheless, the question whether

these strategies can be applied to other 4-valued logics suggests itself. In this

sense, we note a couple of remarks. As it was pointed out in the Introduction,

Brady viewed BN4 as a 4-valued extension of Routley and Meyer’s basic logic

B. Actually, BN4 is axiomatized by extending DW, the result of extending B

with the contraposition axioms (in B, contraposition holds only as a rule of

inference) (cf. [27], Chapter 4, on these and other weak relevant logics. Cf. the

axiomatization of Brady’s BN4 in Section 1 of the Appendix). Now, suppose

that the following entries are fixed in the truth table for the conditional but the

blank spaces can be filled with any truth-value:

→ 0 1 2 3
0 3 3 3 3
1 3 3
2 2 3
3 3

Then, the following three implicative tables (in addition to that of BN4) are

the only ones satisfying the axioms and rules of B:

→ 0 1 2 3
0 3 3 3 3
1 0 3 0 3
2 0 0 2 3
3 0 0 0 3

→ 0 1 2 3
0 3 3 3 3
1 1 3 1 3
2 0 0 2 3
3 0 0 0 3

→ 0 1 2 3
0 3 3 3 3
1 0 3 0 3
2 0 1 2 3
3 0 1 0 3
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It would then be interesting to investigate how the modal operators behave in

the logics resulting from modifying BN4 with these implicative tables, and even

to discuss whether any of them can advantageously substitute the implicative

table characteristic of BN4.

Another interesting question is the following. Łukasiewicz’s 4-valued modal

logic Ł is based upon a matrix whose implicative table satisfies the axioms of

classical implicative logic (cf. Section 2 of the Appendix). As remarked above,

the logic Ł has what has been labelled ‘Łukasiewicz type paradoxes’. However,

it is possible to build a truth-functional modal logic upon positive classical logic

without suffering these paradoxes. One such possibility is studied in [21] where

the truth tables for ¬ and  in Łukasiewicz’s matrix MŁ (cf. Section 2 in the

Appendix) are substituted by the following:

0 1 2 3
¬ 3 1 2 0

0 1 2 3
 0 0 0 3

That is, by the ¬ and  tables in MMBN4 (cf. Definition 2.8). But there

are undoubtedly other possibilities for introducing ¬ and  in classical positive

logic without having to accept Łukasiewicz type paradoxes into the bargain.

A Appendix

A.1 Brady’s original axiomatization of BN4

Brady formulated BN4 with the following axioms, rules and definition.

Axioms :

a1. → 

a2. ( ∧)→ 

a3. ( ∧)→ 

a4. [(→ ) ∧ (→ )]→ [→ ( ∧ )]
a5. [ ∧ ( ∨ )]→ [( ∧) ∨ ( ∧)]
a6. (→ ¬)→ ( → ¬)
a7. ¬¬→ 

a8. (¬ ∧)→ (→ )

a9. ¬→ [ ∨ (→ )]

a10. ( ∨ ¬) ∨ (→ )

a11. → [(→ ¬)→ ¬]
a12.  ∨ [¬→ (→ )]
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Rules:

Modus Ponens (MP) →  & ⇒ 

Adjunction (Adj)  &  ⇒ ( ∧)
Affixing (Aff) →  &  → ⇒ ( → )→ (→ )

Disjunctive Modus Ponens (dMP)  ∨ (→ ) &  ∨⇒  ∨

Definition:

Disjunction.  ∨ =df ¬(¬ ∧ ¬)
Let us label BN40 Brady’s original formulation. Then, we have:

Proposition A.1 (BN40 and BN4 are deductively equivalent) The logic

BN40 and BN4 (as defined in Definition 2.10) are deductively equivalent. That

is, for  ∈ F , `BN4  iff `BN40 

Proof. (a) If `BN4 , then `BN40 . It follows immediately from the complete-
ness of BN40 w.r.t. MBN4-validity (cf. Corollary in p. 28 of [8]; cf. Definition

2.7 above) since all axioms and rules of BN4 (as defined in Definition 2.10) hold

in the matrix MBN4. (b) If `BN40 , then `BN4 : it suffices to prove that a11,
a12 and Aff are provable in BN4 (Definition 2.10). a11 → [(→ ¬)→ ¬]
is immediate by A3 ( → [( → ) → ]); a12  ∨ [¬ → ( → )] is easy
by A14 (∨ [¬(→ )→ ]), and T8 ((¬→ )→ (¬ → )). Finally, Aff
is immediate by A2 and the thesis ( → )→ [(→ )→ (→ )] which is
in its turn immediate by A2 and T5 ([→ ( → )]→ [ → (→ )]).

A.2 Łukasiewicz’s matrix MŁ

Let us define our (version of) Łukasiewicz’s matrix MŁ (cf. [12], [30] and [22]).

Definition A.2 (The matrix MŁ) The proposition language consists of the

connectives →¬ . The matrix MŁ is the structure (V → ¬ ) where
V = {0 1 2 3} and it is partially ordered as in Belnap-Dunn’s matrix MB4 (De-
finition 2.5),  = {3} and → ¬ and  are defined according to the following
tables:

→ 0 1 2 3
0 3 3 3 3
1 2 3 2 3
2 1 1 3 3
3 0 1 2 3

¬
0 3
1 2
2 1
3 0



0 0
1 0
2 2
3 2

The related notions of MŁ-interpretation, etc. are defined according to the

general Definition 2.4.
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A.3 Smiley’s matrix MSm4

Smiley’s matrix MSm4 can be defined as follows (cf. [1], pp. 161-162).

Definition A.3 (Smiley’s matrix MSm4) The propositional language con-

sists of the connectives ∧, ∨, ¬ and →. Smiley’s matrix MSm4 is the struc-
ture (V F) where (1) V and  are defined as in the matrix MŁ and F
= {∧ ∨ ¬ →} where ∧, ∨and ¬ are defined as in MB4 and → according

to the following table:

→ 0 1 2 3
0 3 3 3 3
1 0 3 0 3
2 0 0 3 3
3 0 0 0 3

A.4 Anderson and Belnap’s matrix M0

Anderson and Belnap’s M0 can be defined as follows (cf. [4], [1], §22.1.3).

Definition A.4 (Anderson and Belnap’s matrix M0) The propositional

language consists of the connectives ∧, ∨, ¬ and →. Anderson and Belnap’s
matrix M0 is the structure (V F) where (1) V = {0 1 2 3 4 5 6 7},  =
{4 5 6 7} and ∧ ∨ ¬ and → in F are defined according to the following
truth tables:

→ 0 1 2 3 4 5 6 7 ¬
0 7 7 7 7 7 7 7 7 7
1 0 6 0 6 0 0 6 7 6
2 0 0 5 5 0 5 0 7 5
3 0 0 0 4 0 0 0 7 4
4 0 1 2 3 4 5 6 7 3
5 0 0 2 2 0 5 0 7 2
6 0 1 0 1 0 0 6 7 1
7 0 0 0 0 0 0 0 7 0

∧ 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 1 1
2 0 0 2 2 0 2 0 2
3 0 1 2 3 0 2 1 3
4 0 0 0 0 4 4 4 4
5 0 0 2 2 4 5 4 5
6 0 1 0 1 4 4 6 6
7 0 1 2 3 4 5 6 7

∨ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 1 3 3 6 7 6 7
2 2 3 2 3 5 5 7 7
3 3 3 3 3 7 7 7 7
4 4 6 5 7 4 5 6 7
5 5 7 5 7 5 5 7 7
6 6 6 7 7 6 7 6 7
7 7 7 7 7 7 7 7 7

The matrix M0 is axiomatized in [9]. Anderson and Belnap use −0−1−2−3+0+1+2
and +3 instead of 0 1 2 3 4 5 6 and 7, respectively.
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A.5 The basic logic GBL⊃ is BN4

As remarked in the introduction to this paper, the basic logic GBL⊃ is the
{→∧∨¬} fragment of the bilattice logic GBL⊃ (cf. [2]). The “weak implica-
tion” ⊃ is defined as follows (cf. [2], p.22):  ⊃  =df

½
t if  ∈ 

y if  ∈ 

¾
. So, the

“weak implication” in Belnap-Dunn matrix MB4 (Definition 2.5) is interpreted

according to the following table:

⊃ 0 1 2 3
0 3 3 3 3
1 3 3 3 3
2 0 1 2 3
3 0 1 2 3

which satisfies all classical implicative tautologies. On the other hand, the

“strong implication” (→) is defined as follows:  →  =df ( ⊃ ) ∧ (¬ ⊃
¬), which gives us the following truth table for →:

→ 0 1 2 3
0 3 3 3 3
1 1 3 1 3
2 0 1 2 3
3 0 1 0 3

that is, the conditional truth table of Brady’s BN4. Now, given that ⊃ is

definable from the {→∨} fragment of GBL ([2], Proposition 3.31). the {⊃
∧∨¬} fragment of GBL⊃ is actually Brady’s logic BN4.
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