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NEGATION-CONSISTENCY DEFINED WITH A

PROPOSITIONAL FALSITY CONSTANT

Abstract

The logic BK+ is Routley and Meyer’s basic positive logic B+ plus the K rule.

The logic BKc4 is a negation extension of BK+ in which consistency can be

understood in the standard sense, i.e. as the absence of any contradiction. The

logic BKc4 is a weak logic, but we prove that a definitionally equivalent logic

formulated with a falsity constant can be defined.

1. Introduction

As it is known, minimal negation arose in the context of intuitionistic logic.
The idea is to add a falsity constant F to positive intuitionistic logic J+

and to define negation as follows:

¬A =df A → F

As no axioms for F are introduced, it is J+ which, so to speak, takes
charge of defining the intrinsic negation in J+. The result is minimal
intuitionistic logic Jm (see, e.g. [3]).

Of course, the concept can be generalized. Thus, a ”minimal negation”
for a given positive logic L+ is the negation we get when it is introduced
by means of a falsity constant (and without any axioms for F ), as above.
Obviously, the more powerful the positive logic is, the stronger the negation
defined in it will get.
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Now, if L+ is not a decidedly weak logic, it is not difficult to find an
equivalent logic formulated with a negation connective. Thus, for example,
minimal intuitionistic logic Jm and minimal relevance logic Rm can be
axiomatized by adding

(i). (A → ¬B) → (B → ¬A)

and

(ii). (A → ¬A) → ¬A

to J+ and to positive Relevance Logic R+, respectively (see [2] and [3]).
Well, this is not so easy a task in the case of weak positive logics.

Consider, for example, the logic B+,F defined in [10]. The logic B+,F is
the result of introducing a minimal negation in Routley and Meyer’s basic
positive logic B+. The question is: which extension, if any, of B+ with a
negation connective is equivalent to B+,F ? To discuss this topic with the
mere due attention will take us too far from the aim of the present paper.

Now, the logic BKc1 defined in [8] is the basic constructive logic ad-
equate to consistency understood as the absence of the negation of a the-
orem. That is, and grosso modo, consistency in theories whose underlying
logic is BKc1 cannot be understood as, say, negation-consistency, but ex-
actly as the absence of the negation of a theorem. In BKc1, negation is
introduced with a negation connective. The logic BKc1 is a weak logic,
but in [9], the logic BKc1F , in which negation is introduced by means of a
falsity constant, is shown to be definitionally equivalent to BKc1.

The aim of this paper is to define the logic BKc4F . The logic BKc4
(the logics BKc1- BKc3 are defined in [8]) is the basic constructive logic in
the ternary relational semantics without a set of designated points adequate
(in the sense explained above) to negation-consistency as understood in the
following definition:

Definition 1. Let a be a theory (a theory is a set of formulas closed under
adjunction and provable entailment, cf. §5). Then, a is inconsistent iff for
some wff A, A ∧ ¬A ∈ a. A theory is consistent iff it is not inconsistent.

The logic BKc4 is basic because it is the minimal logic (in the seman-
tics referred to above) for negation-consistency as understood in definition
1, and it is constructive because it is endowed with a (weak) type of intu-
itionistic negation.
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Negation is introduced in BKc4 with a negation connective. In [6], it
is shown how to extend BKc4, consistency still having to be understood as
negation-consistency, within the spectrum delimited by minimal intuition-
istic logic.

The logic BKc4 is not a strong logic, but we shall prove that the logic
BKc4F , in which negation is defined via a falsity constant, is definitionally
equivalent to BKc4. By using the results in [10], it would not be difficult
to define the extensions of BKc4 (in which negation is introduced with a
negation connective) considered in [6] with a propositional falsity constant.
But this point will not be pursued here.

The structure of the paper is as follows. In §2, the logic BK+ is
recalled. It is the result of adding the K rule to Routley and Meyer’s basic
positive logic B+. In §3, the logic BKc4F is introduced, in §4 semantics
for BKc4F is defined, and in §5, completeness in respect of this semantics
is proved. In §6, the axiomatization of BKc4 is recalled and some of its
theorems are proved. Finally, in §7, the definitional equivalence of BKc4
and BKc4F is proved,

2. The logic BK+

BK+ is axiomatized with:

A1. A → A
A2. (A ∧B) → A / (A ∧B) → B
A3. [(A → B) ∧ (A → C)] → [A → (B ∧ C)]
A4. A → (A ∨B) / B → (A ∨B)
A5. [(A → C) ∧ (B → C)] → [(A ∨B) → C]
A6. [A ∧ (B ∨ C)] → [(A ∧B) ∨ (A ∧ C)]

The rules of derivation are:

Modus ponens (MP): (` A → B & ` A) ⇒ ` B
Adjunction (Adj): (` A & ` B) ⇒ ` A ∧B

Suffixing (Suf): ` A → B ⇒ ` (B → C) → (A → C)
Prefixing (Pref): ` (B → C) ⇒ ` (A → B) → (A → C)

K: ` A ⇒ ` B → A

Therefore, BK+ is B+ with the addition of the K rule.
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We now define the semantics for BK+. A BK+ model is a triple
〈K, R, |=〉 where K is a non-empty set and R a ternary relation on K
subject to the following definitions and postulates for all a, b, c, d ∈ K
with quantifiers ranging over K:

d1. a ≤ b =df ∃x Rxab
d2. R2abcd =df ∃x (Rabx & Rxcd)
P1. a ≤ a
P2. (a ≤ b & Rbcd) ⇒ Racd

Finally, |= is a valuation relation from K to the sentences of the positive
language satisfying the following conditions for all propositional variables
p, wffs A, B and a ∈ K:

(i). (a |= p & a ≤ b) ⇒ b |= p
(ii). a |= A ∨B iff a |= A or a |= B
(iii). a |= A ∧B iff a |= A and a |= B
(iv). a |= A → B iff for all b, c ∈ K (Rabc & b |= A) ⇒ c |= B

A formula A is BK+ valid (|=BK+
A) iff a |= A for all a ∈ K in all models.

As it is known, there is a set of ”designated points” in the standard
semantics for relevance logics (see e.g. [11]). It is in respect of this set
that d1 is introduced and wff are evaluated. The absence of this set in
BK+ semantics (and the corresponding changes in d1 and the definition of
validity) are the only but crucial differences between B+ models and BK+
models.

The logic BK+ is, as it is shown in [7], the basic positive logic in the
ternary relational semantics when there is not a set of designated points
and validity is defined in respect of all points of K. That is, BK+ is
the basic positive logic in the semantics just referred to in the same sense
as Routley and Meyer’s B+ is the basic positive logic in general ternary
relational semantics.

It is proved in [7] that BK+ is complete relative to the semantics
defined above.
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3. The logic BKc4F

We add the falsity constant F to the positive language together with the
definition:

D¬ : ¬A ↔ (A → F )

Then, the logic BKc4F can be axiomatized by adding to BK+ the
following axioms:

A7. F → (A → F )
A8. [A ∧ (A → F )] → F

We note the following theorems of BKc4F :

T1. (A ∧ ¬A) → ¬ (A → A) A7, A8
T2. [A → (B ∧ ¬B)] → ¬A A8

T3. ¬A → [A → (A ∧ ¬A)]

Proof. By the theorem of BK+:

(A → B) → [A → (A ∧B)]

we have

(A → F ) → [A → (A ∧ F )]

So, by A7,

(A → F ) → [A → [A ∧ (A → F )]]

T4. [(A → A) → F ] → F

Proof. By the theorem of BK+ used in the previous proof,

1. [(F → F ) → F ] → [(F → F ) ∧ F )]

So, by A8,

2. [(F → F ) → F ] → F

By A1 and the K rule:

3. (F → F ) → (A → A)

Now, T4 is immediate from 2 and 3.
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4. Semantics for BKc4F

A BKc4F model is a quadruple 〈K, S, R, |=〉 where K, R and |= are
defined similarly as in a BK+ model and S is a subset of K. The clauses:

(v). (a ≤ b & a |= F ) ⇒ b |= F
(vi). a |= F iff a /∈ S

and the postulates:

P3. (Rabc & c ∈ S) ⇒ a ∈ S
P4. a ∈ S ⇒ (∃x ∈ S) Raax

are added to clauses (i)-(iv) and postulates P1-P2.
A is BKc4F valid (|=BKc1F

A) iff a |= A for all a ∈ K in all models.

We note that F is not valid (in fact, it is insatisfiable): let M be any
model and a ∈ S. Then, a 6|= F .

In order to prove soundness, we previously prove the following two
lemmas:

Lemma 1. (a ≤ b & a |= A) ⇒ a |= B.

Proof. As in the standard semantics (see, e.g. [11]), by induction on
the length of A. The conditional clause is proved with P2, and the F case,
with clause (v).

Lemma 2. |=BKc4F

A → B iff for all a ∈ K in all models, a |= A ⇒ a |= B.

Proof. By using lemma 1, P1 and d1 similarly as in the standard seman-
tics.

Then, we shall prove soundness of BKc4F .

Theorem 1. If `BKc4F

A, then |=BKc4F

A.

Proof. A1-A6 are proved valid as in BK+ (similarly, as in B+); the
rules MP. Adj., Suf. and Pref. are shown to preserve validity as in BK+
(similarly, as in B+). That the K rule preserves validity is proved as follows:
suppose |=BKc4F

A, 6|=BKc4F

B → A for some wff A, B. Then, a |= B,

a 6|= A for a ∈ K in some model. But, as A is BKc4F valid, a |= A, which
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contradicts a 6|= A above. Now, it remains to prove that A7 and A8 are
valid.

A7 is valid : Suppose a |= F , a 6|= A → F for some wff A and a ∈ K
in some model. Then, Rabc, b |= A, c 6|= F for b, c ∈ K. So, c ∈ S and by
P3, a ∈ S, which is impossible.

A8 is valid: Suppose a |= A ∧ (A → F ), a 6|= F for some wff A and
a ∈ K in some model. Then, a |= A, a |= A → F and a ∈ S. By P4, Raax
for some x ∈ S. By clause (iv), F ∈ x, which is impossible.

5. Completeness of BKc4F

First, we state some definitions. A theory is a set of formulas closed under
adjunction and provable entailment (that is a is a theory if whenever A,
B ∈ a, then A ∧ B ∈ a; and if whenever A → B is a theorem and A ∈ a,
then B ∈ a); a theory is prime if whenever A∨B ∈ a, then A ∈ a or B ∈ a;
a theory is regular iff all theorems of BKc4F belong to a; a theory is null
iff no wff belongs to a. Finally, a is inconsistent iff F ∈ a.

Now, we define the canonical model. Let KT be the set of all theories
and RT be defined on KT as follows: for all formulas A, B and a, b ∈ KT ,
RT abc iff if A → B ∈ a and A ∈ b, then B ∈ c. Further, let KC be set
of all prime non-null theories, SC the set of all consistent theories and RC

the restriction of RT to KC . Finally, let |=C be defined as follows: for any
wff A and a ∈ KC , a |=C A iff A ∈ a. Then, the BKc4F canonical model
is the quadruple 〈KC , SC , RC , |=C〉.

In order to prove completeness, we shall need some previous lemmas.

Lemma 3. Let a ∈ KT . Then, a is non-null iff a is regular.

Proof. (a) Let A ∈ b and B be a theorem. By the K rule, A → B is a
theorem. So, B ∈ b. (b) If a is regular, a is obviously non-null.

Lemma 4. Let a, b be non-null theories, the set x = {B | ∃A[A → B ∈ a
& A ∈ b]} is a non-null theory such that RT abx.

Proof. It is easy to prove that x is a theory such that RT abx. We prove
that x is non-null. Let A ∈ b. By lemma 3, A → A ∈ a. So, A ∈ x, by
RT abx.
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The following four lemmas are an easy adaptation of the correspond-
ing B+ lemmas (see, e.g. [4]). They are restricted to the case of non-null
theories (as it is known, theories are not necessarily non-null in the B+
canonical model and, in fact, in the canonical model of any standard rele-
vance logic).

Lemma 5. Let A be a wff, a a non-null element in KT and A /∈ a. Then,
A /∈ x for some x ∈ KC such that a ⊆ x.

Lemma 6. Let a be a non-null element in KT , b ∈ KT and c a prime
member in KT such that RT abc. Then, RT xbc for some x ∈ KC such that
a ⊆ x.

Lemma 7. Let a ∈ KT , b a non-null element in KT and c a prime member
in KT such that RT abc. Then, RT axc for some x ∈ KC such that b ⊆ x.

Lemma 8. a ≤C b iff a ⊆ b.

(Note that b and c in lemma 6 and a and c in lemma 7 need not be
non-null).

We remark the following corollary of lemma 5:

Corollary 1. (Primeness lemma) If a is a non-null consistent theory,
then there is a prime non-null consistent theory x such that a ⊆ x.

Proof. Suppose a is a non-null consistent theory. Then, F /∈ a. So, by
lemma 5, there is a prime non-null theory x such that a ⊆ x and F /∈ x.
Then, x is consistent.

Now, in order to prove the completeness of BKc4F , we have to prove:

1. SC is not empty.
2. Postulates P1-P4 hold canonically.
3. Clauses (i)-(vi) are canonically valid.

1. SC is not empty:

Proof. Let BKc4F be the set of its theorems. As 6|=BKc4F

F , 6`BKc4F

F ,

by the soundness theorem, i.e. F /∈ BKc4F . Then, by lemma 5, there is
a prime non-null theory x such that a ⊆ x and F /∈ x. As x is non-null,
consistent and prime, x ∈ SC .
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2. Postulates P1-P4 hold canonically:

Proof. P1 and P2 are immediate from lemma 8. So, we prove that P3
and P4 hold canonically. It follows immediately from the following lemma.

Lemma 9.

1. Let a, b be non-null theories and c a consistent non-null theory such
that RT abc. Then, a is consistent as well.

2. Let a be a non-null consistent element in KT . Then, there is some
non-null member in KT such that RT aax.

Proof. Case 1: Assume the hypothesis of case 1. Suppose by reductio
that a is inconsistent, i.e. F ∈ a. By A7, `BKc4F

F → [(F → F ) → F ].

So, (F → F ) → F ∈ a. Now, F → F ∈ b (cf. lemma 3). Therefore F ∈ c
contradicting the consistency of c.

Case 2: Let a be a non-null consistent theory. Define the non-null
theory x such that RT aax (cf. lemma 4). Suppose F ∈ x. Then, A → F ∈
a for some A ∈ a. Then, F ∈ a contradicting the consistency of a.

Next, we prove the canonical adequacy of P3 and P4. They read
canonically as follows:

P3: Let a, b ∈ KC , c ∈ SC and RCabc. Then, a ∈ SC .

Proof. Immediate by lemma 9 (1).

P4: Let a ∈ SC . Then, there is some x ∈ SC such that RCaax.

Proof. Let a ∈ SC . By lemma 9 (2), there is a non-null consistent
theory y such that RT aay. By using corollary 1, there is a prime non-null
consistent theory x such that y ⊆ x. Obviously, RT aax.

3. The clauses hold canonically:

Proof. Clauses (ii), (iii) and (vi) are trivial, and (i) and (v) are immediate
by lemma 8. So, let us prove clause (iv):

(a) If a |=C A → B, then (RCabc & b |=C A) ⇒ c |=C B:
The proof is immediate by definitions.
(b) If a 6|=C A → B, then there are b, c ∈ KC such that RCabc,

b |=C A and c 6|=C B:
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Suppose a 6|=C A → B. The sets x = {B |`BKc4F

A → B}, y =

{B | ∃C[C → B ∈ a & C ∈ x]} are theories such that RT axy. Now,
A ∈ x (`BKc4F

A → A, by A1) and B /∈ y (if B ∈ y, then A → B ∈ a

contradicting the hypothesis). As x is non-null, by lemma 4, y is non-null
as well. Thus, we have non-null theories x, y such that RT axy, A ∈ x,
B /∈ y. Now, by lemma 5, y is extended to a prime theory c such that
y ⊆ c and B /∈ c. Obviously, RT axc. Next, by lemma 7, x is extended to
a prime theory b such that x ⊆ b and RCabc. Therefore, we have non-null
prime theories b, c such that A ∈ b, B /∈ c and RCabc, as required.

Now, by 1, 2 and 3, we have:

Theorem 2. (Completeness of BKc4F ) If |=BKc4F

A, then `BKc4F

A.

We end this section by proving a proposition on the meaning of F :

Proposition 1. Let a ∈ KT . Then, a is inconsistent (F ∈ a) iff a
contains a contradiction.

Proof. (a) Suppose F ∈ a. As ¬F is a theorem (A1 and D¬), `BKc4F

F → ¬F by the K rule. So, ¬F ∈ a, and a contains the contradiction
F ∧ ¬F . (b) Suppose for some wff A, A ∧ ¬A ∈ a, then F ∈ a by A8.

Thus, as in BKc4, a is inconsistent iff a contains a contradiction.

6. The logic BKc4
We add the unary connective ¬ to the positive language of BK+. Next,
BKc4 is axiomatized by adding the following axioms to BK+ (see [6]):

A9. ¬A → [A → (A ∧ ¬A)]
A10. [B → (A ∧ ¬A)] → ¬B
A11. (A ∧ ¬A) → ¬(A → A)

We note the following theorems and rules of BKc4:

t1. ` A → B ⇒ ` ¬B → ¬A A9, A10
t2. ¬A → [A → ¬(A → A)] A9, A11
t3. ¬A → [A → ¬(B → B)] t2, A1, K, t1
t4. (A → ¬A) → ¬A
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Proof. By the theorem of BK+
(A → B) → [A → (A ∧B)]

we have

(A → ¬A) → [A → (A ∧ ¬A)]
Then, t4 follows by A10.

t5. [B → ¬(A → A)] → ¬B A1, K, t1, t4
t6. ¬(A → A) → [B → ¬(A → A)] A1, K, t1, t3
t7. (A ∧ ¬A) → ¬(B → B) A1, K, t1, A10
t8. [A ∧ [A → ¬(B → B)]] → ¬(B → B) t5, t7

We end this section by introducing F by definition in BKc4:

Definition 2. (DF ) Let A be a wff. Then, F ↔ ¬(A → A).

That is to say, F replaces any wff of the form ¬(A → A). Now, we
recall that in BKc4, inconsistency is defined as follows (see [6]): a theory
a is inconsistent iff it contains a contradiction. Then we prove:

Proposition 2. Let a ∈ KT . Then, a is inconsistent iff for some wff A,
¬(A → A) ∈ a.

Proof. (a) Suppose a is inconsistent, i.e. suppose that B ∧ ¬B ∈ a for
some wff B. By t7, ¬(A → A) ∈ a. (b)Now, suppose ¬(A → A) ∈ a
for some wff A. By the K rule, `BKc4

¬(A → A) → (A → A). So,

A → A ∈ a. Therefore, (A → A) ∧ ¬(A → A) ∈ a.

In other words, a is inconsistent iff F ∈ a, as one should expect.

7. The definitional equivalence between BKc4
and BKc4F

We shall understand the notion of definitional equivalence as “definitional
equivalence via translations” (see, e.g. [5]). For the purposes of the present
paper this notion can be explained as follows. Let L1 and L2 be two logics
in different languages, t1 the set of terms of L1 absent in L2, and t2, the set
of terms of L2 absent in L1. Then, L1 and L2 are definitionally equivalent
iff there are definitions of t1 in terms of L2 (Dt1) and definitions of t2 in
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terms of L1 (Dt2) such that L1 ∪{Dt2} = L2 ∪{Dt1} (x∪y is the deductive
closure of the union of x and y, and definitions are expressed as a set of
suitable biconditionals). It is important to note that it is not sufficient to
prove L1 ⊆ L2 ∪{Dt1} and L2 ⊆ L1 ∪{Dt2}. It additionally has to be
shown that Dt2 is provable in L2 ∪ {Dt1} and Dt1 is provable in L1 ∪
{Dt2} (cf. [1]).

Therefore, we have to prove in the present case:

1. BKc4F ⊆ BKc4 ∪ {DF}.
2. BKc4 ⊆ BKc1F ∪ {D¬}.
3. D¬ is provable in BKc4 ∪ {DF}.
4. DF is provable in BKc4F ∪ {D¬}.

Proposition 3. BKc4F ⊆ BKc4∪ {DF}.

Proof. Theorems t6 and t8 are A7 and A8, respectively, when defined.

Proposition 4. BKc4 ⊆ BKc4F ∪ {D¬}.

Proof. T3 and T2 and T1 are A9, A10 and A11, respectively.

Proposition 5. D¬ is provable in BKc4∪ {DF}.

Proof. By t2 and DF , ¬A → (A → F ). By t5 and DF , (A → F ) → ¬A.
So, ¬A ↔ (A → F ) by Adj. and definition of the biconditional.

Proposition 6. DF is provable in BKc4F∪ {D¬}.

Proof. By A7 and D¬, F → ¬(A → A). By T4 and D¬, ¬(A → A) → F .
So, F ↔ ¬(A → A) by Adj. and definition of the biconditional.
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